• Title/Summary/Keyword: number plate recognition

Search Result 89, Processing Time 0.025 seconds

The automatic recognition of the plate of vehicle using the correlation coefficient and hough transform (상관계수와 하프변환을 이용한 차량번호판 자동인식)

  • Kim, Kyoung-Min;Lee, Byung-Jin;Lyou, Kyoung;Park, Gwi-Tae
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.3 no.5
    • /
    • pp.511-519
    • /
    • 1997
  • This paper presents the automatic recognition algorithm of the license number in on vehicle image. The proposed algorithm uses the correlation coefficient and Hough transform to detect license plate. The m/n ratio reduction is performed to save time and memory. By the correlation coefficient between the standard pattern and the target pattern, licence plate area is roughly extracted. On the extracted local area, preprocessing and binarization is performed. The Hough transform is applied to find the extract outline of the plate. If the detection fails, a smaller or a larger standard pattern is used to compute the correlation coefficient. Through this process, the license plate of different size can be extracted. Two algorithms to each separate number are proposed. One segments each number with projection-histogram, and the other segments each number with the label. After each character is separated, it is recognized by the neural network. This research overlomes the problems in conventional methods, such as the time requirement or failure in extraction of outlines which are due to the processing of the entire image, and by processing in real time, the practical application is possible.

  • PDF

Vehicle License Plate Recognition Using the Training Data's Annexation (훈련예제 병합을 이용한 자동차 차량번호판 문자인식 성능 향상 방안)

  • Baik, Nam Cheol;Lee, Sang Hyup;Ryu, Kwang Ryul
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.3D
    • /
    • pp.349-352
    • /
    • 2006
  • To cope with traffic congestion, traffic accidents and lack of parking facilities, caused by dramatic increase in total vehicle number, vigorous researches on managing vehicles efficiently are done, both domestically and internationally. The vehicle license plate recognition makes effective management of traffic possible, with its wide application in many fields, covering from speed enforcement, collecting toll, stolen vehicle detection to parking management. The vehicle license plate recognition system causes high cost for collecting training data. Many researches are done by using the virtual sample method, which can be effective for utilizing limited number of training data by generating virtual sample. This paper investigates techniques to improve the performance of vehicle license plate recognition by using the training data's annexation. Also, popular methods for virtual sample creation used for text recognition algorithm are analyzed and their effectiveness is verified.

Real-Time Vehicle License Plate Recognition System Using Adaptive Heuristic Segmentation Algorithm (적응 휴리스틱 분할 알고리즘을 이용한 실시간 차량 번호판 인식 시스템)

  • Jin, Moon Yong;Park, Jong Bin;Lee, Dong Suk;Park, Dong Sun
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.3 no.9
    • /
    • pp.361-368
    • /
    • 2014
  • The LPR(License plate recognition) system has been developed to efficient control for complex traffic environment and currently be used in many places. However, because of light, noise, background changes, environmental changes, damaged plate, it only works limited environment, so it is difficult to use in real-time. This paper presents a heuristic segmentation algorithm for robust to noise and illumination changes and introduce a real-time license plate recognition system using it. In first step, We detect the plate utilized Haar-like feature and Adaboost. This method is possible to rapid detection used integral image and cascade structure. Second step, we determine the type of license plate with adaptive histogram equalization, bilateral filtering for denoise and segment accurate character based on adaptive threshold, pixel projection and associated with the prior knowledge. The last step is character recognition that used histogram of oriented gradients (HOG) and multi-layer perceptron(MLP) for number recognition and support vector machine(SVM) for number and Korean character classifier respectively. The experimental results show license plate detection rate of 94.29%, license plate false alarm rate of 2.94%. In character segmentation method, character hit rate is 97.23% and character false alarm rate is 1.37%. And in character recognition, the average character recognition rate is 98.38%. Total average running time in our proposed method is 140ms. It is possible to be real-time system with efficiency and robustness.

The Development of a License Plate Recognition System using Template Matching Method in Embedded System (임베디드 시스템에서의 템플릿 매칭 기법을 이용한 번호판 인식 시스템 개발)

  • Kim, Hong-Hee;Lee, Jae-Heung
    • Journal of IKEEE
    • /
    • v.15 no.4
    • /
    • pp.274-280
    • /
    • 2011
  • The implementation of the recognition system of a vehicle license plate and the Linux OS environment which is built in SoC Embedded system and its test result are presented in this paper. In order to recognize a vehicle license plate, each character has to be extracted from the whole image of a license plate and the extracted image is revised for the template matching. Labeling technique and numerical features are used to detect the vehicle license plate. Each character in the license plate has coordinates. The extracted image is revised by comparison of the numerical coordinates and recognized through template matching method. The experimental results show that the license plate detection rate is 96%, and a character recognition rate is 73%, and a number recognition rate is 97% for about 300 license plate images. The average time of the recognition in the embedded board is 0.66 sec.

A Vehicle License Plate Recognition Using the Haar-like Feature and CLNF Algorithm (Haar-like Feature 및 CLNF 알고리즘을 이용한 차량 번호판 인식)

  • Park, SeungHyun;Cho, Seongwon
    • Smart Media Journal
    • /
    • v.5 no.1
    • /
    • pp.15-23
    • /
    • 2016
  • This paper proposes an effective algorithm of Korean license plate recognition. By applying Haar-like feature and Canny edge detection on a captured vehicle image, it is possible to find a connected rectangular, which is a strong candidate for license plate. The color information of license plate separates plates into white and green. Then, OTSU binary image processing and foreground neighbor pixel propagation algorithm CLNF will be applied to each license plates to reduce noise except numbers and letters. Finally, through labeling, numbers and letters will be extracted from the license plate. Letter and number regions, separated from the plate, pass through mesh method and thinning process for extracting feature vectors by X-Y projection method. The extracted feature vectors are classified using neural networks trained by backpropagation algorithm to execute final recognition process. The experiment results show that the proposed license plate recognition algorithm works effectively.

Implementation of Parking Management System using Cloud based License Plate Recognition Service (클라우드 기반의 자동차번호인식 서비스를 이용한 주차관제시스템 구현)

  • Kim, Dae-Jin
    • Journal of Digital Contents Society
    • /
    • v.19 no.1
    • /
    • pp.173-179
    • /
    • 2018
  • With the recent increase in the number of cars and the lack of parking spaces, the number of parking businesses has increased. the parking management has become an essential element in parking business, and the parking management's company becomes an increasingly popular opportunity. However, as competition grows as more and more and companies increase in number, efforts are being made to create new services, gain technological excellence, or reduce costs through current system improvements. In this paper, we developed a parking management system using cloud based LPR(License Plate Recognition) service for effective parking. Structural improvements in the proposed system reduce costs, simplify installation, and respond quickly to failures and updates.

Recognition of Multi-Target Objects Using Passive AVI Techniques (수동 AVI 기술을 이용한 다중목표물의 인식)

  • Jo, Dong-Uk;Kim, Ju-Won
    • The Transactions of the Korea Information Processing Society
    • /
    • v.6 no.7
    • /
    • pp.1970-1979
    • /
    • 1999
  • This paper proposes an AVI system which recognizes the license plate and the driver's face simultaneously using passive AVI techniques. For this, firstly, the pro-processing algorithm independent of the environment is proposed and region extraction of the car number plate and the driver's face is described. Secondly, characters are separated and recognition parameters are extracted from target regions. Thirdly, template matching of car number plate is performed and the fuzzy relation matrix of driver face is made for the final recognition processes. The merits of the proposed system are following : Pre-processing is accomplished regardless of the environment. The application areas of conventional AVI system can be expanded in the content that the driver's face is also recognized in the proposed system compared with only the number plast is recognized in the existing systems.

  • PDF

A Study on Real-Time Recognition of Car license Plate Using Neural (인공신경회로망을 이용한 실시간 차량번호판 인식에 관한 연구)

  • Kim, Seong-H.;Lee, Young-J.;Chang, Yong-H.;Lee, Kwon-S.
    • Proceedings of the KIEE Conference
    • /
    • 1997.07b
    • /
    • pp.507-509
    • /
    • 1997
  • One of the most difficult tasks in the process of car license plate is the extraction of each character from within license plate region. This paper presents a real-time recognition of car licence number using neural network in parking lot. The feature parameters of letters and numbers of license plate are extracted by thinning algorithm. Both feature parameters are used to train neural networks for the image recognition.

  • PDF

Convergence CCTV camera embedded with Deep Learning SW technology (딥러닝 SW 기술을 이용한 임베디드형 융합 CCTV 카메라)

  • Son, Kyong-Sik;Kim, Jong-Won;Lim, Jae-Hyun
    • Journal of the Korea Convergence Society
    • /
    • v.10 no.1
    • /
    • pp.103-113
    • /
    • 2019
  • License plate recognition camera is dedicated device designed for acquiring images of the target vehicle for recognizing letters and numbers in a license plate. Mostly, it is used as a part of the system combined with server and image analysis module rather than as a single use. However, building a system for vehicle license plate recognition is costly because it is required to construct a facility with a server providing the management and analysis of the captured images and an image analysis module providing the extraction of numbers and characters and recognition of the vehicle's plate. In this study, we would like to develop an embedded type convergent camera (Edge Base) which can expand the function of the camera to not only the license plate recognition but also the security CCTV function together and to perform two functions within the camera. This embedded type convergence camera equipped with a high resolution 4K IP camera for clear image acquisition and fast data transmission extracted license plate area by applying YOLO, a deep learning software for multi object recognition based on open source neural network algorithm and detected number and characters of the plate and verified the detection accuracy and recognition accuracy and confirmed that this camera can perform CCTV security function and vehicle number plate recognition function successfully.

Image Processing-based Validation of Unrecognizable Numbers in Severely Distorted License Plate Images

  • Jang, Sangsik;Yoon, Inhye;Kim, Dongmin;Paik, Joonki
    • IEIE Transactions on Smart Processing and Computing
    • /
    • v.1 no.1
    • /
    • pp.17-26
    • /
    • 2012
  • This paper presents an image processing-based validation method for unrecognizable numbers in severely distorted license plate images which have been degraded by various factors including low-resolution, low light-level, geometric distortion, and periodic noise. Existing vehicle license plate recognition (LPR) methods assume that most of the image degradation factors have been removed before performing the recognition of printed numbers and letters. If this is not the case, conventional LPR becomes impossible. The proposed method adopts a novel approach where a set of reference number images are intentionally degraded using the same factors estimated from the input image. After a series of image processing steps, including geometric transformation, super-resolution, and filtering, a comparison using cross-correlation between the intentionally degraded reference and the input images can provide a successful identification of the visually unrecognizable numbers. The proposed method makes it possible to validate numbers in a license plate image taken under low light-level conditions. In the experiment, using an extended set of test images that are unrecognizable to human vision, the proposed method provides a successful recognition rate of over 95%, whereas most existing LPR methods fail due to the severe distortion.

  • PDF