• Title/Summary/Keyword: number of cycles

Search Result 1,104, Processing Time 0.03 seconds

Probabilistic Risk Assessment of Coastal Structures using LHS-based Reliability Analysis Method (LHS기반 신뢰성해석 기법을 이용한 해안구조물의 확률론적 위험도평가)

  • Huh, Jung-Won;Jung, Hong-Woo;Ahn, Jin-Hee;An, Sung-Wook
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.19 no.6
    • /
    • pp.72-79
    • /
    • 2015
  • An efficient and practical reliability evaluation method is proposed for the coastal structures in this paper. It is capable of evaluating reliability of real complicated coastal structures considering uncertainties in various sources of design parameters, such as wave and current loads, resistance-related design variables including Young's modulus and compressive strength of the reinforced concrete, soil parameters, and boundary conditions. It is developed by intelligently integrating the Latin Hypercube sampling (LHS), Monte Carlo simulation (MCS) and the finite element method (FEM). The LHS-based MCS is used to significantly reduce the computational effort by limiting the number of simulation cycles required for the reliability evaluation. The applicability and efficiency of the proposed method were verified using a caisson-type breakwater structure in the numerical example.

Novel IME Instructions and their Hardware Architecture for Fast Search Algorithm (고속 탐색 알고리즘에 적합한 움직임 추정 전용 명령어 및 구조 설계)

  • Bang, Ho-Il;SunWoo, Myung-Hoon
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.48 no.12
    • /
    • pp.58-65
    • /
    • 2011
  • This paper presents an ASIP (Application-specific Instruction Processor) for motion estimation that employs specific IME instructions and its programmable and reconfigurable hardware architecture for various video codecs, such as H.264/AVC, MPEG4, etc. With the proposed specific instructions and variable point 2D SAD hardware accelerator, it can handle the real-time processing requirement of High Definition (HD) video. With the SAD unit and its parallel operations using pattern information, the proposed IME instructions support not only full search algorithms but also other fast search algorithms. The hardware size is 25.5K gates for each Processing Element Group (PEG) which has 128 SAD Processor Elements (PEs). The proposed ASIP has been verified by the Synopsys Processor Designer and implemented by the Design Compiler using the IBM 90nm process technology. The hardware size is 453K gates for the IME unit and the operating frequency is 188MHz for 1080p@30 frame in real time. The proposed ASIP can reduce the hardware size about 26% and the number of operation cycles about 18%.

An Efficient Matrix Multiplier Available in Multi-Head Attention and Feed-Forward Network of Transformer Algorithms (트랜스포머 알고리즘의 멀티 헤드 어텐션과 피드포워드 네트워크에서 활용 가능한 효율적인 행렬 곱셈기)

  • Seok-Woo Chang;Dong-Sun Kim
    • Journal of IKEEE
    • /
    • v.28 no.1
    • /
    • pp.53-64
    • /
    • 2024
  • With the advancement of NLP(Natural Language Processing) models, conversational AI such as ChatGPT is becoming increasingly popular. To enhance processing speed and reduce power consumption, it is important to implement the Transformer algorithm, which forms the basis of the latest natural language processing models, in hardware. In particular, the multi-head attention and feed-forward network, which analyze the relationships between different words in a sentence through matrix multiplication, are the most computationally intensive core algorithms in the Transformer. In this paper, we propose a new variable systolic array based on the number of input words to enhance matrix multiplication speed. Quantization maintains Transformer accuracy, boosting memory efficiency and speed. For evaluation purposes, this paper verifies the clock cycles required in multi-head attention and feed-forward network and compares the performance with other multipliers.

Maturity and Spawning of the Atka Mackerel, Pleurogrammus azonus (Jordan and Metz) in the East Sea (동해 임연수어, Pleurogrammus azonus (Jordan and Metz)의 성숙과 산란)

  • Lee, Sung-Il;Yang, Jae-Hyeong;Yoon, Sang-Chul;Chun, Young-Yull;Kim, Jong-Bin;Cha, Hyung-Kee;Chang, Dae-Soo;Kim, Jae-Won
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.42 no.6
    • /
    • pp.633-641
    • /
    • 2009
  • Maturity and spawning of the atka mackerel, Pleurogrammus azonus, was investigated based on the samples collected by gill net and set net in the East Sea from January 2006 to March 2009. Gonadosomatic index (GSI) began to increase in October, and reached a maximum between November and December. After spawning GSI began to decrease from January. The spawning period was from October to January, and main spawning period was from November to December. Annual reproductive cycles of this species could be divided into five successive stages in females; early growing stage (June), late growing stage (July to August), mature stage (September to October), ripe and spent stage (November to January), and recovery and resting stage (January to May). Males showed four successive stages: growing stage (June to August), mature stage (September to October), ripe and spent stage (October to December), and recovery and resting stage (January to May). P. azonus could be one of polycyclic species spawning two times or more during one spawning season. Number of total and mature eggs in the fecundity were proportional to fork length. The fork length at 50% group maturity was estimated to be 26.9 cm.

Design and Verification of Pipelined Face Detection Hardware (파이프라인 구조의 얼굴 검출 하드웨어 설계 및 검증)

  • Kim, Shin-Ho;Jeong, Yong-Jin
    • Journal of Korea Multimedia Society
    • /
    • v.15 no.10
    • /
    • pp.1247-1256
    • /
    • 2012
  • There are many filter based image processing algorithms and they usually require a huge amount of computations and memory accesses making it hard to attain a real-time performance, expecially in embedded applications. In this paper, we propose a pipelined hardware structure of the filter based face detection algorithm to show that the real time performance can be achieved by hardware design. In our design, the whole computation is divided into three pipeline stages: resizing the image (Resize), Transforming the image (ICT), and finding candidate area (Find Candidate). Each stage is optimized by considering the parallelism of the computation to reduce the number of cycles and utilizing the line memory to minimize the memory accesses. The resulting hardware uses 507 KB internal SRAM and occupies 9,039 LUTs when synthesized and configured on Xilinx Virtex5LX330 FPGA. It can operate at maximum 165MHz clock, giving the performance of 108 frame/sec, while detecting up to 20 faces.

New Parallel MDC FFT Processor for Low Computation Complexity (연산복잡도 감소를 위한 새로운 8-병렬 MDC FFT 프로세서)

  • Kim, Moon Gi;Sunwoo, Myung Hoon
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.52 no.3
    • /
    • pp.75-81
    • /
    • 2015
  • This paper proposed the new eight-parallel MDC FFT processor using the eight-parallel MDC architecture and the efficient scheduling scheme. The proposed FFT processor supports the 256-point FFT based on the modified radix-$2^6$ FFT algorithm. The proposed scheduling scheme can reduce the number of complex multipliers from eight to six without increasing delay buffers and computation cycles. Moreover, the proposed FFT processor can be used in OFDM systems required high throughput and low hardware complexity. The proposed FFT processor has been designed and implemented with a 90nm CMOS technology. The experimental result shows that the area of the proposed FFT processor is $0.27mm^2$. Furthermore, the proposed eight-parallel MDC FFT processor can achieve the throughput rate up to 2.7 GSample/s at 388MHz.

Functional Improvement of the Compressed Data Management System for Mobile DBMS (모바일 DBMS를 위한 압축 데이터 관리 시스템의 기능 고도화)

  • Hwang, Jin-Ho;Lee, Jeong-Wha;Kim, Gun-Woo;Shin, Young-Jae;Son, Jin-Hyun
    • The KIPS Transactions:PartD
    • /
    • v.15D no.6
    • /
    • pp.733-740
    • /
    • 2008
  • Recently, mobile computing devices are used popularly. And quantity of information on mobile computing devices is being increased due to digitalization of information. So it needs an embedded DBMS for effective information management. Furthermore, since flash memory having a restriction on the number of partial write cycles is rapidly deployed on mobile computing devices as data storage and is more expensive than the conventional magnetic hard disk, the compressed data management system(CDMS) has been considered as an effective storage management technique for mobile computing devices in previous research. However, the research of CDMS is at the initial stage and has several problems. Hence, in this paper, we present additional storage management methods to solve the problems and improve the effectiveness of the CDMS for embedded DBMS.

Time Synchronization for WSN Nodes Operating on Low-Energy Sleep-Wake Cycles (저 에너지의 취침 기상 사이클로 작동하는 무선센서 네크워크 노드들을 위한 시간 동기화)

  • Yun, Ho-Jung;Yun, Joo-Sung;Lee, Sung-Gu
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.16 no.3
    • /
    • pp.331-335
    • /
    • 2010
  • Previous low-energy time synchronization methods have mainly focused on reducing the number of transmission or reception packets. However, this paper proposes a method that reduces the percentage of time a node has to be awake (the duty cycle), assuming that a periodic sleep-wake cycle is used to conserve energy. Based on our experience with actual WSN devices, a system model is proposed, and the potential performance of the proposed method, with different parameter values, is analyzed. To further demonstrate the feasibility of our method, experiments were conducted using nine WSN devices in a $3{\times}3$ grid network topology. The results show the average synchronization error is 107.57 $\mu{s}$ in duty cycle 5% and synchronization period 10 sec, and 130 $\mu{s}$ in duty cycle 2.5% and synchronization period 20 sec.

Comparison of fatigue fracture strength by fixture diameter of mini implants (미니 임플란트 직경에 따른 피로파절강도의 비교 연구)

  • Heo, Yu-Ri;Son, Mee-Kyoung;Kim, Hee-Jung;Choe, Han-Cheol;Chung, Chae-Heon
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.50 no.3
    • /
    • pp.156-161
    • /
    • 2012
  • Purpose: This study was conducted to obtain difference in fracture strength according to the diameter of one-body O-ring-type of mini implant fixture, to determine the resistance of mini implant to masticatory pressure, and to examine whether overdenture using O-ring type mini implant is clinically usable to maxillary and mandibular edentulous patients. Materials and methods: For this study, 13 mm long one body O-ring-type mini implants of different diameters (2.0 mm, 2.5 mm and 3.0 mm) (Dentis, Daegu, Korea) were prepared, 5 for each diameter. The sample was placed at $30^{\circ}$ from the horizontal surface on the universal testing machine, and off-axis loading was applied until permanent deformation occurred and the load was taken as maximum compressive strength. The mean value of the 5 samples was calculated, and the compressive strength of implant fixture was compared according to diameter. In addition, we prepared 3 samples for each diameter, and applied loading equal to 80%, 60% and 40% of the compressive strength until fracture occurred. Then, we measured the cycle number on fracture and analyzed fatigue fracture for each diameter. Additionally, we measured the cycle number on fracture that occurred when a load of 43 N, which is the average masticatory force of complete denture, was applied. The difference on compressive strength between each group was tested statistically using one-way ANOVA test. Results: Compressive strength according to the diameter of mini implant was $101.5{\pm}14.6N$, $149{\pm}6.1N$ and $276.0{\pm}13.4N$, respectively, for diameters 2.0 mm, 2.5 mm and 3.0 mm. In the results of fatigue fracture test at 43 N, fracture did not occur until $2{\times}10^6$ cycles at diameter 2.0 mm, and until $5{\times}10^6$ cycles at 2.5 mm and 3.0 mm. Conclusion: Compressive strength increased significantly with increasing diameter of mini implant. In the results of fatigue fracture test conducted under the average masticatory force of complete denture, fracture did not occur at any of the three diameters. All of the three diameters are usable for supporting overdenture in maxillary and mandibular edentulous patients, but considering that the highest masticatory force of complete denture is 157 N, caution should be used in case diameter 2.0 mm or 2.5 mm is used.

An Estimation on Two Stroke Low Speed Diesel Engines' Shaft Fatigue Strength due to Torsional Vibrations in Time Domain (시간영역에서 과도 비틀림 진동에 의한 저속 2행정 디젤엔진의 축계 피로강도 평가)

  • Lee, Don-Chool;Kim, Sang-Hwan
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.17 no.7 s.124
    • /
    • pp.572-578
    • /
    • 2007
  • Two stroke low speed diesel engines are widely used for marine propulsion or as power plant prime mover. These engines have many merits which includes higher thermal efficiency, mobility and durability. Yet various annoying vibrations occur sometimes in ships or at the plant itself. Of these vibrations, torsional vibration is very important and dictates a careful investigation during the engme's initial design stage for safe operation. With the rule and limit on torsional vibration in place, shaft strength fatigue due to torsional vibration however demands further analysis which possibly can be incorporated in the classification societies' rule and limit. In addition, the shaft's torsional vibration stresses can be calculated equivalently from accumulated fatigue cycles number due to transient torsional vibration in time domain. In this paper, authors suggest a new estimation method combined with Palmgren-Miner equation. A 6S70MC-C ($25,320ps{\times}91rpm$) engine for ship propulsion was selected as a case study. Angular velocity was measured, instead of shaft's strain, for simplified measurement and it was converted to torsional vibration stress for accumulated fatigue cycle numbers in shafting life time. Likewise, the accumulated fatigue calculation was compared with shaft fatigue strength limit. This new method can be further realized and confirmed in ship with two stroke low speed diesel engine.