• Title/Summary/Keyword: nuclear proliferation

Search Result 498, Processing Time 0.027 seconds

ELECTRON MICROSCOPIC STUDY OF THE SPILT IRRADIATION EFFECTS ON THE RAT PAROTID DUCTAL CELLS (방사선 분할조사가 타액선 도관세포에 미치는 영향에 관한 전자현미경적 연구)

  • Kim Sang Soo;Lee Sang Rae
    • Journal of Korean Academy of Oral and Maxillofacial Radiology
    • /
    • v.18 no.1
    • /
    • pp.177-187
    • /
    • 1988
  • This study was designed to investigate the effects of split irradiation on the salivary ductal cells, especially on the intercalated cells of the rat parotid glands. For this study, 24 Sprague-Dawley strain rats were irradiated on the head and neck region with two equal split doses of 9Gy for a 4 hours interval by Co-60 teletherapy unit, Picker's model 4M 60. The conditions of irradiation were that field size, dose rate, SSD and depth were 12×5㎝, 222 cGy/min, 50㎝ and 1㎝, respectively. The experimental animals were sacrificed 1. 2, 3, 6, 12, hours and 1, 3, 7, days after the irradiation and the changes of the irradiated intercalated cells of the parotid glands were examined under light and electron microscope. The results were as follows: 1. By the split irradiation, the degenerative changes of intercalated cells of the parotid glands appeared at 3 hours after irradiation and the most severe cellular degeneration observed at 6 hours after irradiation. The repair processes began from 12 hours after irradiation and have matured progressively. 2. Under electron microscope, loss of nuclear membrane, microvilli and secretory granules, derrangement of chromosomes, degeneration of cytoplasm, atrophy or reduction of intracytoplasmic organelles were observed in the intercalated ductal cells after split irradiation. 3. Under light microscope, derrangement of ductal cells, widening of cytoplasms and nuclei, hyperchromatism and proliferation of ductal cells were observed in intercalated ducts after split irradiation.

  • PDF

Suppressive effects on the expression of cyclooxygenase-2 and inducible nitric oxide synthase by a natural sesquiterpenoid in lipopolysaccharide-stimulated mouse macrophage cells

  • Min, Hye-Young;Park, Hyen-Joo;Park, Eun-Jung;Lee, Sang-Kook
    • Proceedings of the Korean Society of Applied Pharmacology
    • /
    • 2003.11a
    • /
    • pp.101-101
    • /
    • 2003
  • Prostaglandins (PGs) and nitric oxide (NO) produced by inducible cyclooygenase (COX-2) and nitric oxide synthase (iNOS), respectively, have been implicated as important mediators in the process of inflammation and carcinogenesis. On this line, the potential COX-2 or iNOS inhibitors have been considered as anti-inflammatory and cancer chemopreventive agents. In our continuing efforts of searching for novel cancer chemopreventive agents from natural products, we isolated natural sesquiterpenoids as potential COX-2 and iNOS inhibitors in cultured lipopolysaccharide (LPS)-activated mouse macrophage RAW 264.7 cells. Alantolactone, a natural eudesmane-type sesquiterpenoid, exhibited a potent inhibition of COX-2 (IC50 = 0.4 $\mu\textrm{g}$/$m\ell$) and iNOS activity (IC50 = 0.08 $\mu\textrm{g}$/$m\ell$) in the assay system determined by PGE2 and NO accumulation, respectively. The inhibitory potential of alantolactone on the PGE2 and NO production was well coincided with the suppression of COX-2 and iNOS protein and mRNA expression in LPS-induced macrophages. Furthermore, alantolactone inhibited NF-kB but not AP-l binding activity on nuclear extracts evoked by LPS-stimulated macrophage cells, suggesting the possible involvement of NF-kB in the regulation of COX-2 and iNOS expression. In further study with COX-2-expressing human colon HT-29 cells, alantolactone inhibited the cell proliferation, down-regulated COX-2, and inhibited the ERK phosphorylation in the early time. These results suggest that a natural sesquiterpenoid alantolactone might be a potential lead candidate for further developing COX-2 or iNOS inhibitor possessing cancer chemopreventive or anti-inflammatory activity

  • PDF

Liraglutide Inhibits the Apoptosis of MC3T3-E1 Cells Induced by Serum Deprivation through cAMP/PKA/β-Catenin and PI3K/AKT/GSK3β Signaling Pathways

  • Wu, Xuelun;Li, Shilun;Xue, Peng;Li, Yukun
    • Molecules and Cells
    • /
    • v.41 no.3
    • /
    • pp.234-243
    • /
    • 2018
  • In recent years, the interest towards the relationship between incretins and bone has been increasing. Previous studies have suggested that glucagon-like peptide-1 (GLP-1) and its receptor agonists exert beneficial anabolic influence on skeletal metabolism, such as promoting proliferation and differentiation of osteoblasts via entero-osseous-axis. However, little is known regarding the effects of GLP-1 on osteoblast apoptosis and the underlying mechanisms involved. Thus, in the present study, we investigated the effects of liraglutide, a glucagon-like peptide-1 receptor agonist, on apoptosis of murine MC3T3-E1 osteoblastic cells. We confirmed the presence of GLP-1 receptor (GLP-1R) in MC3T3-E1 cells. Our data demonstrated that liraglutide inhibited the apoptosis of osteoblastic MC3T3-E1 cells induced by serum deprivation, as detected by Annexin V/PI and Hoechst 33258 staining and ELISA assays. Moreover, liraglutide upregulated Bcl-2 expression and downregulated Bax expression and caspase-3 activity at intermediate concentration (100 nM) for maximum effect. Further study suggested that liraglutide stimulated the phosphorylation of AKT and enhanced cAMP level, along with decreased phosphorylation of $GSK3{\beta}$, increased ${\beta}-catenin$ phosphorylation at Ser675 site and upregulated nuclear ${\beta}-catenin$ content and transcriptional activity. Pretreatment of cells with the PI3K inhibitor LY294002, PKA inhibitor H89, and siRNAs GLP-1R, ${\beta}-catenin$ abrogated the liraglutide-induced activation of cAMP, AKT, ${\beta}-catenin$, respectively. In conclusion, these findings illustrate that activation of GLP-1 receptor by liraglutide inhibits the apoptosis of osteoblastic MC3T3-E1 cells induced by serum deprivation through $cAMP/PKA/{\beta}-catenin$ and $PI3K/Akt/GSK3{\beta}$ signaling pathways.

Restenosis and Remodeling (관동맥성형술 후의 혈관 재협착 및 재형성)

  • Chae, Jei-Keon
    • 대한핵의학회:학술대회논문집
    • /
    • 1999.05a
    • /
    • pp.205-208
    • /
    • 1999
  • Percutaneous Transluminal Coronary Angioplasty (PTCA) remains limited by restenosis that occurs in 30 to 50% of patients with coronary artery disease. During the last decade, numerous agents have been used to prevent restenosis. Despite positive results in animal models, no pharmacological therapy has been found to significantly decrease the risk of restenosis in humans. These discrepancies between animal models and clinical situation were probably related to an incomplete understanding of the mechanism of restenosis. Neointimal thickening occurs in response to experimental arterial injury with a balloon catheter. Neointimal formation involves different steps: smooth muscle cell activation, proliferation and migration, and the production of extracellular matrix. The factors that control neointimal hyperplasia include growth factors, humoral factors and mechanical factors. Arterial remodeling also plays a major role in the restenosis process. Studies performed in animal and human subjects have established the potentials for "constrictive remodeling" to reduce the post-angioplasty vessel area, thereby indirectly narrowing the vessel lumen and thus contributing to restenosis. The reduction of restenosis rate in patients with intracoronary stent implantation has been attributed to the preventive effect of stent itself for this negative remodeling. In addition to these mochanisms for restenosis, intraluminal or intra-plaque thrombus formation, reendothelialization and apoptosis theories have been introduced and confirmed at least in part.

  • PDF

Effects of Epothilone A in Combination with the Antidiabetic Drugs Metformin and Sitagliptin in HepG2 Human Hepatocellular Cancer Cells: Role of Transcriptional Factors NF-κB and p53

  • Rogalska, Aneta;Sliwinska, Agnieszka;Kasznicki, Jacek;Drzewoski, Jozef;Marczak, Agnieszka
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.17 no.3
    • /
    • pp.993-1001
    • /
    • 2016
  • Type 2 diabetes mellitus patients are at increased risk of many forms of malignancies, especially of the pancreas, colon and hepatocellular cancer. Unfortunately, little is known of the possible interaction between antidiabetic drugs and anticancer agents. The present study investigates the influence of metformin (MET) and sitagliptin (SITA) on the in vitro anticancer activity of the microtubule depolymerization inhibitor agent epothilone A (EpoA). Hepatocellular liver carcinoma cell line (HepG2) viability and apoptosis were determined by the MTT test and by double staining with PO-PRO-1 and 7-aminoactinomycin D, respectively, after treatment with EpoA, metformin or sitagliptin. The levels of nuclear factor NF-${\kappa}B$ and p53 were evaluated in the presence and absence of inhibitors. While EpoA and MET inhibited HepG2 cell proliferation, SITA did not. EpoA and SITA induced higher p53 levels than MET. All tested drugs increased the level of NF-${\kappa}B$. Only MET enhanced the proapoptotic effect of EpoA. The EpoA+MET combination evoked the highest cytotoxic effect on HepG2 cells and led to apoptosis independent of p53, decreasing the level of NF-${\kappa}B$. These findings support the link between NF-${\kappa}B$ and p53 in the modulation of apoptotic effects in HepG2 cells treated by EpoA. Our studies indicate that the combination of EpoA and MET applied in subtoxic doses has a stronger cytotoxic effect on liver cancer cells than each of the compounds alone. The therapeutic advantages of the combination of EpoA with MET may be valuable in the treatment of patients with diabetes mellitus type 2 (T2DM) and liver cancer.

Influence of 17β-Estradiol on 15-Deoxy-Δ12,14 Prostaglandin J2 -Induced Apoptosis in MCF-7 and MDA-MB-231 Cells

  • Yaacob, Nik Soriani;Nasir, Rabail;Norazmi, Mohd Nor
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.11
    • /
    • pp.6761-6767
    • /
    • 2013
  • The nuclear receptor, peroxisome proliferator-activated receptor gamma ($PPAR{\gamma}$), is expressed in various cancer cells including breast, prostate, colorectal and cervical examples. An endogenous ligand of $PPAR{\gamma}$, 15-deoxy-${\Delta}^{12,14}$ prostaglandin $J_2$ (PGJ2), is emerging as a potent anticancer agent but the exact mechanism has not been fully elucidated, especially in breast cancer. The present study compared the anticancer effects of PGJ2 on estrogen receptor alpha ($ER{\alpha}$)-positive (MCF-7) and $ER{\alpha}$-negative (MDA-MB-231) human breast cancer cells. Based on the reported signalling cross-talk between $ER{\alpha}$ and $ER{\alpha}$, the effect of the $ER{\alpha}$ ligand, $17{\beta}$-estradiol (E2) on the anticancer activities of PGJ2 in both types of cells was also explored. Here we report that PGJ2 inhibited proliferation of both MCF-7 and MDA-MB-231 cells by inducing apoptotic cell death with active involvement of mitochondria. The presence of E2 potentiated PGJ2-induced apoptosis in MCF-7, but not in MDA-MB-231 cells. The $ER{\alpha}$ antagonist, GW9662, failed to block PGJ2-induced activities but potentiated its effects in MCF-7 cells, instead. Interestingly, GW9662 also proved capable of inducing apoptotic cell death. It can be concluded that E2 enhances $ER{\alpha}$-independent anticancer effects of PGJ2 in the presence of its receptor.

Anti-inflammatory Effects of Various Mushrooms in LPS-stimulated RAW264.7 Cells

  • Seo, Kyung Hye;Park, Jeong-Yong;Noh, Hyung-Jun;Lee, Ji Yeon;Lee, Eun Young;Han, Jae-Gu;Kim, Jin Hyo;Cheong, Mi Sun
    • Korean Journal of Plant Resources
    • /
    • v.31 no.5
    • /
    • pp.478-488
    • /
    • 2018
  • Mushrooms have been widely cultivated and consumed as foods and herbal medicines owing to their various biological properties. However, few studies have evaluated the anti-inflammatory effects of mushrooms. Here, we investigated the effects of mushroom extracts (MEs) on lipopolysaccharide (LPS)-induced inflammation in macrophages (RAW264.7 cells). First, we extracted MEs with either water or ethanol. Using LPS-treated RAW264.7 cells, we measured cell proliferation and NO production. Gene expression of tumor necrosis $factor-{\alpha}$ ($TNF-{\alpha}$), interleukin (IL)-6 (IL-6), and $IL-1{\beta}$ was assessed by RT-PCR, and protein abundance of inducible NO synthase (iNOS) and cyclooxygenase-2 (COX-2) and phosphorylation of p65 were determined by immunoblotting. MEs prepared using both water and ethanol inhibited LPS-induced inflammation in RAW264.7 cells. Nitric oxide (NO) levels induced by LPS were reduced by treatment with MEs. Isaria japonica Yasuda water extracts and Umbilicaria esculenta (Miyoshi) Minks ethanol extracts significantly decreased the mRNA expression of inflammation-related cytokine genes including $TNF-{\alpha}$, IL-6, and $IL-1{\beta}$. Similarly, the protein abundance of iNOS and COX-2 was also decreased. The phosphorylation of p65, a subunit of nuclear $factor-{\kappa}B$ was at least partly suppressed by MEs. This study suggests that mushrooms could be included in the diet to prevent and treat macrophage-related chronic immune diseases.

The effect of the cytotoxicity of sodium lauryl sulfate containing toothpaste on HaCaT and NIH-3T3 cells (구강세치제에 함유된 SLS(Sodium lauryl Sulfate)가 HaCaT 세포와 NIH-3T3 세포에 미치는 독성 효과)

  • Park, Sang-Rye;Kim, Young-Min;Choi, Byul-Bora;Kim, Ji-Young
    • Journal of Korean society of Dental Hygiene
    • /
    • v.15 no.4
    • /
    • pp.719-725
    • /
    • 2015
  • Objectives: The purpose of this study was to determine the toxic effects of sodium lauryl sulfate(SLS) in human keratinocyte HaCaT cells and mouse fibroblast NIH-3T3 cells. Methods: The effect of sodium lauryl sulfate(SLS) cell viability and proliferation were determined by WST-1 assay and changes shape of nucleus were evaluated by Hoechst staining under fluorescence microscopy. Additionally, observation of cell morphological changes under light microscopy. Results: SLS induced cytotoxicity and a marked apoptosis in both HaCaT and NIH-3T3 cell lines. With the result of the WST-1 assay, SLS induced the cytotoxicity of 0.005% and 0.0075%, 0.01% SLS for 24 h after HaCaT and NIH-3T3 cells in time and dose-dependent manner(p<0.005). SLS inhibited cell growth and caused apoptosis as evidenced by nuclear fragmentation and condensation. Thus, determination of the morphological changes to define apoptosis was visualized using inverted phase contrast microscopy. Conclusions: SLS had toxicity of the human keratinocyte cells and mouse fibroblast cells and this study will provide the basic data for the development of proper SLS concentration in dentifrice.

Combination between Taxol-Encapsulated Liposomes and Eruca sativa Seed Extract Suppresses Mammary Tumors in Female Rats Induced by 7,12 Dimethylbenz(α)anthracene

  • Shaban, Nadia;Abdel-Rahman, Salah;Haggag, Amany;Awad, Doaa;Bassiouny, Ahmad;Talaat, Iman
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.17 no.1
    • /
    • pp.117-123
    • /
    • 2016
  • Taxol (paclitaxel) is a powerful anti-cancer drug widely used against several types of malignant tumors. Because Taxol may exert several side effects, a variety of formulations have been developed. One of these features liposomes, regarded as one of the most promising drug carriers, biocompatible and best able to reduce drug toxicity without changing efficacy against tumor cells. Eruca sativa seed extract (SE) is considered a promising natural product from cruciferous vegetables against breast cancer, increasing chemotherapeutic and eliminating harmful side effects. The effects of Taxol-encapsulated liposomes (T) alone and in combination between Eruca sativa seed extract on nuclear factor kappa B (NF-${\kappa}B$), cyclooxygenase-2 (COX-2) and B-cell lymphoma-2 (Bcl-2) gene expression levels were investigated in rat mammary gland carcinogenesis induced by 7,12 dimethylbenz(${\alpha}$) anthracene (DMBA) using qRT-PCR. The results showed that DMBA increased NF-${\kappa}B$, COX-2 and Bcl-2 gene expression levels and lipid peroxidation (LP), while decreasing glutathione-S-transferase (GST) and superoxide dismutase (SOD) activities and total antioxidant concentration (TAC) compared to the control group. T and T-SE treatment reduced NF-${\kappa}B$, COX-2 and Bcl-2 gene expression levels and LP. Hence, T and T-SE treatment appeared to reduce inflammation and cell proliferation, while increasing apoptosis, GST and SOD activities and TAC.

Anti-CSC Effects in Human Esophageal Squamous Cell Carcinomas and Eca109/9706 Cells Induced by Nanoliposomal Quercetin Alone or Combined with CD 133 Antiserum

  • Zheng, Nai-Gang;Mo, Sai-Jun;Li, Jin-Ping;Wu, Jing-Lan
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.20
    • /
    • pp.8679-8684
    • /
    • 2014
  • CD133 was recently reported to be a cancer stem cell and prognostic marker. Quercetin is considered as a potential chemopreventive agent due to its involvement in suppression of oxidative stress, proliferation and metastasis. In this study, the expression of CD133/CD44 in esophageal carcinomas and Eca109/9706 cells was explored. In immunoflurorescence the locations of $CD133^+$ and multidrug resistance 1 $(MDR1)^+$ in the same E-cancer cells were coincident, mainly in cytomembranes. In esophageal squamous cell carcinomas detected by double/single immunocytochemistry, small $CD133^+$ cells were located in the basal layer of stratified squamous epithelium, determined as CSLC (cancer stem like cells); $CD44^+$ surrounding the cells appeared in diffuse pattern, and the larger $CD44^+$ (hi) cells were mainly located in the prickle cell layer of the epithelium, as progenitor cells. In E-cancer cells exposed to nanoliposomal quercetin (nLQ with cytomembrane permeability), down-regulation of NF-${\kappa}Bp65$, histone deacetylase 1 (HDAC1) and cyclin D1 and up-regulation of caspase-3 were shown by immunoblotting, and attenuated HDAC1 with nuclear translocation and promoted E-cadherin expression were demonstrated by immunocytochemistry. In particular, enhanced E-cadherin expression reflected the reversed epithelial mesenchymal transition (EMT) capacity of nLQ, acting as cancer attenuator/preventive agent. nLQ acting as an HDAC inhibitor induced apoptotic cells detected by TUNEL assay mediated via HDAC-NF-${\kappa}B$ signaling. Apoptotic effects of liposomal quercetin (LQ, with cytomembrane-philia) combined with CD133 antiserum were also detected by CD133 immunocytochemistry combined with TUNEL assay. The combination could induce greater apoptotic effects than nLQ induced alone, suggesting a novel anti-CSC treatment strategy.