References
- Alberti C (2013). Taxane- and epothilone-based chemotherapy: from molecule cargo cytoskeletal logistics to management of castration-resistant prostate carcinoma. Eur Rev Med Pharmacological Sci, 17, 1658-64.
- Aldea M, Craciun L, Tomuleasa C, et al (2014). Repositioning metformin in cancer: genetics, drug targets, and new ways of delivery. Tumour Biol, 35, 5101-10. https://doi.org/10.1007/s13277-014-1676-8
- An F, Zhao WJ, Tang L, et al (2015). Concentration-dependent differential effects of an epothilone analog on cell cycle and p53 signaling. Oncol Rep.
- Aoki M, Nata T, Morishita R, et al (2001). Endothelial apoptosis induced by oxidative stress through activation of NF-kappaB: antiapoptotic effect of antioxidant agents on endothelial cells. Hypertension, 38, 48-55. https://doi.org/10.1161/01.HYP.38.1.48
- Azlin AH, Looi LM, Cheah PL (2014). Tissue microarray immunohistochemical profiles of p53 and pRB in hepatocellular carcinoma and hepatoblastoma. Asian Pac J Cancer Prev, 15, 3959-63. https://doi.org/10.7314/APJCP.2014.15.9.3959
- Baldwin AS (2012). Regulation of cell death and autophagy by IKK and NF-kappaB: critical mechanisms in immune function and cancer. Immunological Rev, 246, 327-45. https://doi.org/10.1111/j.1600-065X.2012.01095.x
- Ben Sahra I, Laurent K, Giuliano S, et al (2010). Targeting cancer cell metabolism: the combination of metformin and 2-deoxyglucose induces p53-dependent apoptosis in prostate cancer cells. Cancer Res, 70, 2465-75. https://doi.org/10.1158/0008-5472.CAN-09-2782
- Bost F, Sahra IB, Le Marchand-Brustel Y, et al (2012). Metformin and cancer therapy. Curr Opin Oncol, 24, 103-8. https://doi.org/10.1097/CCO.0b013e32834d8155
- Cai X, Hu X, Cai B, et al (2013). Metformin suppresses hepatocellular carcinoma cell growth through induction of cell cycle G1/G0 phase arrest and p21CIP and p27KIP expression and downregulation of cyclin D1 in vitro and in vivo. Oncol Rep, 30, 2449-57. https://doi.org/10.3892/or.2013.2718
- Carmichael J, DeGraff WG, Gazdar AF, et al (1987). Evaluation of a tetrazolium-based semiautomated colorimetric assay: assessment of chemosensitivity testing. Cancer Res, 47, 936-42.
- Chang AY, Wang M (2013). In-vitro growth inhibition of chemotherapy and molecular targeted agents in hepatocellular carcinoma. Anticancer Drugs, 24, 251-9. https://doi.org/10.1097/CAD.0b013e32835ba289
- Chaudhary SC, Kurundkar D, Elmets CA, et al (2012). Metformin, an antidiabetic agent reduces growth of cutaneous squamous cell carcinoma by targeting mTOR signaling pathway. Photochem Photobiol, 88, 1149-56. https://doi.org/10.1111/j.1751-1097.2012.01165.x
- Chen HP, Shieh JJ, Chang CC, et al (2013). Metformin decreases hepatocellular carcinoma risk in a dose-dependent manner: population-based and in vitro studies. Gut, 62, 606-15. https://doi.org/10.1136/gutjnl-2011-301708
- Chen TM, Lin CC, Huang PT, et al (2011). Metformin associated with lower mortality in diabetic patients with early stage hepatocellular carcinoma after radiofrequency ablation. J Gastroenterol Hepatol, 26, 858-65. https://doi.org/10.1111/j.1440-1746.2011.06664.x
- Chiang GG, Abraham RT (2007). Targeting the mTOR signaling network in cancer. Trends Mol Med, 13, 433-42. https://doi.org/10.1016/j.molmed.2007.08.001
-
Davoudi Z, Akbarzadeh A, Rahmatiyamchi M, et al (2014). Molecular target therapy of AKT and NF-
${\kappa}B$ signaling pathways and multidrug resistance by specific cell penetrating inhibitor peptides in HL-60 cells. asian pac j cancer prev, 15, 4353-8. https://doi.org/10.7314/APJCP.2014.15.10.4353 - Dilokthornsakul P, Chaiyakunapruk N, Termrungruanglert W, et al (2013). The effects of metformin on ovarian cancer: a systematic review. International J Gynecological Cancer, 23, 1544-51. https://doi.org/10.1097/IGC.0b013e3182a80a21
- Ganesan C, Obulareddy SJ, Fischer JH, et al (2014). Phase I Study of Pazopanib and Ixabepilone in Patients With Solid Tumors. am j clinical oncol.
- Giannakakou P, Nakano M, Nicolaou KC, et al (2002). Enhanced microtubule-dependent trafficking and p53 nuclear accumulation by suppression of microtubule dynamics. Proc Natl Acad Sci USA, 99, 10855-60. https://doi.org/10.1073/pnas.132275599
- Hadad SM, Hardie DG, Appleyard V, Thompson AM (2014). Effects of metformin on breast cancer cell proliferation, the AMPK pathway and the cell cycle. Clin Transl Oncol, 16, 746-52. https://doi.org/10.1007/s12094-013-1144-8
- Hammer S, Sommer A, Fichtner I, et al (2010). Comparative profiling of the novel epothilone, sagopilone, in xenografts derived from primary non-small cell lung cancer. Clin Cancer Res, 16, 1452-65. https://doi.org/10.1158/1078-0432.CCR-09-2455
- Harris K, Smith L (2013). Safety and efficacy of metformin in patients with type 2 diabetes mellitus and chronic hepatitis C. Ann Pharmacother, 47, 1348-52. https://doi.org/10.1177/1060028013503108
- Hayden MS, Ghosh S (2012). NF-kappaB, the first quartercentury: remarkable progress and outstanding questions. Genes Development, 26, 203-34. https://doi.org/10.1101/gad.183434.111
- Hofer A, Noe N, Tischner C, et al (2014). Defining the action spectrum of potential PGC-1alpha activators on a mitochondrial and cellular level in vivo. Human molecular genetics.
- Huang Y, Fan W (2002). IkappaB kinase activation is involved in regulation of paclitaxel-induced apoptosis in human tumor cell lines. Molecular Pharmacol, 61, 105-13. https://doi.org/10.1124/mol.61.1.105
- Ismail S, Mayah W, Battia HE, et al (2015). Plasma nuclear factor kappa B and serum peroxiredoxin 3 in early diagnosis of hepatocellular carcinoma. Asian Pac J Cancer Prev, 16, 1657-63. https://doi.org/10.7314/APJCP.2015.16.4.1657
- Kapahi P, Takahashi T, Natoli G, et al (2000). Inhibition of NF-kappa B activation by arsenite through reaction with a critical cysteine in the activation loop of Ikappa B kinase. J Biological Chemistry, 275, 36062-6. https://doi.org/10.1074/jbc.M007204200
- Kasznicki J, Sliwinska A, Drzewoski J (2014). Metformin in cancer prevention and therapy. Ann Transl Med, 2, 57.
- Lee SH, Son SM, Son DJ, et al (2007). Epothilones induce human colon cancer SW620 cell apoptosis via the tubulin polymerization independent activation of the nuclear factorkappaB/IkappaB kinase signal pathway. Molecular Cancer Therapeutics, 6, 2786-97. https://doi.org/10.1158/1535-7163.MCT-07-0002
- Lenski M, Kazakov A, Marx N, et al (2011). Effects of DPP-4 inhibition on cardiac metabolism and function in mice. J Molecular Cellular Cardiology, 51, 906-18. https://doi.org/10.1016/j.yjmcc.2011.08.001
- Loong HH, Yeo W (2014). Microtubule-targeting agents in oncology and therapeutic potential in hepatocellular carcinoma. Onco Targets Ther, 7, 575-85.
- Madan E, Gogna R, Bhatt M, et al (2011). Regulation of glucose metabolism by p53: emerging new roles for the tumor suppressor. Oncotarget, 2, 948-57. https://doi.org/10.18632/oncotarget.389
- Miyoshi H, Kato K, Iwama H, et al (2014). Effect of the antidiabetic drug metformin in hepatocellular carcinoma in vitro and in vivo. Int J Oncol, 45, 322-32. https://doi.org/10.3892/ijo.2014.2419
- Mok TS, Choi E, Yau D, et al (2006). Effects of patupilone (epothilone B; EPO906), a novel chemotherapeutic agent, in hepatocellular carcinoma: an in vitro study. Oncol, 71, 292-6. https://doi.org/10.1159/000106450
- Otte A, Rauprich F, Hillemanns P, et al (2014). In vitro and in vivo therapeutic approach for a small cell carcinoma of the ovary hypercalcaemic type using a SCCOHT-1 cellular model. Orphanet J Rare Dis, 9, 126. https://doi.org/10.1186/s13023-014-0126-4
- Patel S, Singh N, Kumar L (2015). Evaluation of Effects of Metformin in Primary Ovarian Cancer Cells. Asian Pacific J Cancer Prev, 16, 6973-9. https://doi.org/10.7314/APJCP.2015.16.16.6973
- Rengarajan T, Nandakumar N, Rajendran P, et al (2014). D-pinitol promotes apoptosis in MCF-7 cells via induction of p53 and Bax and inhibition of Bcl-2 and NF-kappaB. Asian Pac J Cancer Prev, 15, 1757-62. https://doi.org/10.7314/APJCP.2014.15.4.1757
- Rogalska A, Gajek A, Marczak A (2014). Epothilone B induces extrinsic pathway of apoptosis in human SKOV-3 ovarian cancer cells. Toxicol In Vitro, 28, 675-83. https://doi.org/10.1016/j.tiv.2014.02.007
- Rogalska A, Marczak A, Gajek A, et al (2013a). Induction of apoptosis in human ovarian cancer cells by new anticancer compounds, epothilone A and B. Toxicol In Vitro, 27, 239-49. https://doi.org/10.1016/j.tiv.2012.09.006
- Rogalska A, Szula E, Gajek A, et al (2013b). Activation of apoptotic pathway in normal, cancer ovarian cells by epothilone B. Environ Toxicol Pharmacol, 36, 600-10. https://doi.org/10.1016/j.etap.2013.06.003
- Saito T, Chiba T, Yuki K, et al (2013). Metformin, a diabetes drug, eliminates tumor-initiating hepatocellular carcinoma cells. PloS one, 8, 70010. https://doi.org/10.1371/journal.pone.0070010
- Sangle GV, Lauffer LM, Grieco A, et al (2012). Novel biological action of the dipeptidylpeptidase-IV inhibitor, sitagliptin, as a glucagon-like peptide-1 secretagogue. Endocrinol, 153, 564-73. https://doi.org/10.1210/en.2011-1732
- Sliwinska A, Rogalska A, Marczak A, et al (2015). Metformin, but not sitagliptin, enhances WP 631-induced apoptotic HepG2 cell death. Toxicol In Vitro, 29, 1116-23. https://doi.org/10.1016/j.tiv.2015.04.019
- Tan HK, Moad AI, Tan ML (2014). The mTOR signalling pathway in cancer and the potential mTOR inhibitory activities of natural phytochemicals. Asian Pac J Cancer Prev, 15, 6463-75. https://doi.org/10.7314/APJCP.2014.15.16.6463
- Ueda Y, Richmond A (2006). NF-kappaB activation in melanoma. Pigment cell research / sponsored by the European Society for Pigment Cell Research and the International Pigment Cell Society, 19, 112-24. https://doi.org/10.1111/j.1600-0749.2006.00304.x
- Wang CH, Wey KC, Mo LR, et al (2015). Current trends and recent advances in diagnosis, therapy, and prevention of hepatocellular carcinoma. Asian Pac J Cancer Prev, 16, 3595-604. https://doi.org/10.7314/APJCP.2015.16.9.3595
- Wardle EN (2001). Nuclear factor kappaB for the nephrologist. Nephrol Dial Transplant, 16, 1764-8. https://doi.org/10.1093/ndt/16.9.1764
- Winsel S, Sommer A, Eschenbrenner J, et al (2011). Molecular mode of action and role of TP53 in the sensitivity to the novel epothilone sagopilone (ZK-EPO) in A549 non-small cell lung cancer cells. PloS one, 6, 19273. https://doi.org/10.1371/journal.pone.0019273
- Woudenberg-Vrenken TE, Conde de la Rosa L, Buist-Homan M, et al (2013). Metformin protects rat hepatocytes against bile acid-induced apoptosis. PloS one, 8, 71773. https://doi.org/10.1371/journal.pone.0071773
- Yi G, He Z, Zhou X, et al (2013). Low concentration of metformin induces a p53-dependent senescence in hepatoma cells via activation of the AMPK pathway. Int J Oncol, 43, 1503-10. https://doi.org/10.3892/ijo.2013.2077
- Zhang H, An F, Tang L, et al (2014). Multiple effects of a novel epothilone analog on cellular processes and signaling pathways regulated by Rac1 GTPase in the human breast cancer cells. Korean J Physiol Pharmacol, 18, 109-20. https://doi.org/10.4196/kjpp.2014.18.2.109
- Zhang ZJ, Li S (2014). The prognostic value of metformin for cancer patients with concurrent diabetes: a systematic review and meta-analysis. Diabetes Obes Metab, 16, 707-10. https://doi.org/10.1111/dom.12267
- Zheng L, Yang W, Wu F, et al (2013). Prognostic significance of AMPK activation and therapeutic effects of metformin in hepatocellular carcinoma. Clinical Cancer Res, 19, 5372-80. https://doi.org/10.1158/1078-0432.CCR-13-0203
- Zhou Q, Wong CH, Lau CP, et al (2013). Enhanced Antitumor Activity with Combining Effect of mTOR Inhibition and Microtubule Stabilization in Hepatocellular Carcinoma. Int J Hepatol, 2013, 103830.
- Zhuang Y, Miskimins WK (2008a). Cell cycle arrest in Metformin treated breast cancer cells involves activation of AMPK, downregulation of cyclin D1, and requires p27Kip1 or p21Cip1. J Molecular Signal, 3, 18. https://doi.org/10.1186/1750-2187-3-18
- Zhuang Y, Miskimins WK (2008b). Cell cycle arrest in Metformin treated breast cancer cells involves activation of AMPK, downregulation of cyclin D1, and requires p27Kip1 or p21Cip1. J Mol Signal, 3, 18. https://doi.org/10.1186/1750-2187-3-18
- Zuco V, Zunino F (2008). Cyclic pifithrin-alpha sensitizes wild type p53 tumor cells to antimicrotubule agent-induced apoptosis. Neoplasia, 10, 587-96. https://doi.org/10.1593/neo.08262
Cited by
- Targeting autophagy as a strategy for drug discovery and therapeutic modulation vol.9, pp.3, 2017, https://doi.org/10.4155/fmc-2016-0210
- Effect of sitagliptin, a DPP-4 inhibitor, against DENA-induced liver cancer in rats mediated via NF-κB activation and inflammatory cytokines pp.10956670, 2018, https://doi.org/10.1002/jbt.22220
- In vitro assays and techniques utilized in anticancer drug discovery pp.0260437X, 2018, https://doi.org/10.1002/jat.3658