• Title/Summary/Keyword: nuclear power industry

Search Result 414, Processing Time 0.029 seconds

A case Study of 3D Model Application for Combining Nuclear Power Industry with Virtual Reality Technology (원전 산업과 가상현실기술 접목을 위한 3D 모델 원전 적용사례 연구)

  • Lim, Byung-Ki
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2019.05a
    • /
    • pp.224-225
    • /
    • 2019
  • Virtual reality technology can be defined as human-computer interface that makes virtual place of specific environments or situation is an interactive computer-generated experience taking place within a simulated environment. In order to combine virtual reality technology of domestic nuclear power industry, the R&D Project has been developing a virtual/augment reality system for nuclear power plant from April 2018 to March 2021. To effectively apply virtual reality technology of domestic nuclear industry, it is necessary to build virtual space similar to real environment. Therefore, This study is analysed 3d model status for nuclear power plant during the life-cycle, and suggested a method to build 3D cad model close to real environment.

  • PDF

Applications of online simulation supporting PWR operations

  • Wang, Chunbing;Duan, Qizhi;Zhang, Chao;Fan, Yipeng
    • Nuclear Engineering and Technology
    • /
    • v.53 no.3
    • /
    • pp.842-850
    • /
    • 2021
  • Real Time Simulation (RTS) has long been used in the nuclear power industry for operator training and engineering purposes. And, Online Simulation (OLS) is based on RTS and with connection to the plant information system to acquire the measurement data in real time for calibrating the simulation models and following plant operation, for the purposes of analyzing plant events and providing indicative signs of malfunctioning. An OLS system has been developed to support PWR operations for CPR1000 plants. The OLS system provides graphical user interface (GUI) for operators to monitor critical plant operations for preventing faulty operation or analyzing plant events. Functionalities of the OLS system are depicted through the maneuvering of the GUI for various OLS functional modules in the system.

Today's Nuclear Challenge: Maintenance and Radiation Exposure

  • Willis, Chales A.
    • Nuclear Engineering and Technology
    • /
    • v.7 no.2
    • /
    • pp.159-165
    • /
    • 1975
  • The Nuclear power industry today faces a serious and rapidly emerging problem in reactor maintenance and occupational radiation exposure control. The basic problem is the need for much maintenance on nuclear power plants. The problem is seriously compounded by radiation exposure control requirements. Many studies are underway seeking solutions tut the industry is developing rapidly and new plants will not await the results of such studies. It is essential that attention be given to maintenance and exposure control in all phases of plant design, construction and operation.

  • PDF

Safety Regulation of Enhanced In-Service Inspection(ISI) in Nuclear Power Plant (원자력발전소 강화 가동중검사 안전규제)

  • Shin, Ho-Sang
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.30 no.4
    • /
    • pp.380-385
    • /
    • 2010
  • The integrity of components and piping of operating nuclear power plants has been identified by in-service inspection(ISI) requirements and activities commensurate with standards and codes such as KEPIC MI or ASME Code Section XI. However, the other various degradation mechanisms not considered during design stage of nuclear power plants have been checked by enhanced ISI. The requirements of enhanced ISI have been voluntarily developed by the industry itself or strickly issued by regulatory body. Even though the requirements were developed by the industry, they should be reviewed by regulatory body for their application in nuclear power plants. The enhanced ISI activities and requirements of non-destructive examination(NDE) which reflect the degradation issues in nuclear power industry will be primarily discussed in this paper.

An Evaluation Method for Tornado Missile Strike Probability with Stochastic Correlation

  • Eguchi, Yuzuru;Murakami, Takahiro;Hirakuchi, Hiromaru;Sugimoto, Soichiro;Hattori, Yasuo
    • Nuclear Engineering and Technology
    • /
    • v.49 no.2
    • /
    • pp.395-403
    • /
    • 2017
  • An efficient evaluation method for the probability of a tornado missile strike without using the Monte Carlo method is proposed in this paper. A major part of the proposed probability evaluation is based on numerical results computed using an in-house code, Tornado-borne missile analysis code, which enables us to evaluate the liftoff and flight behaviors of unconstrained objects on the ground driven by a tornado. Using the Tornado-borne missile analysis code, we can obtain a stochastic correlation between local wind speed and flight distance of each object, and this stochastic correlation is used to evaluate the conditional strike probability, $Q_V(r)$, of a missile located at position r, where the local wind speed is V. In contrast, the annual exceedance probability of local wind speed, which can be computed using a tornado hazard analysis code, is used to derive the probability density function, p(V). Then, we finally obtain the annual probability of tornado missile strike on a structure with the convolutional integration of product of $Q_V(r)$ and p(V) over V. The evaluation method is applied to a simple problem to qualitatively confirm the validity, and to quantitatively verify the results for two extreme cases in which an object is located just in the vicinity of or far away from the structure.

Predictive Maintenance Plan based on Vibration Monitoring of Nuclear Power Plants using Industry 4.0 (4차 산업기술을 활용한 원전설비 진동감시기반 예측정비 방안)

  • Do-young Ko
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.19 no.1
    • /
    • pp.6-10
    • /
    • 2023
  • Only about 10% of selected equipment in nuclear power plants are monitored by wiring to address failures or problems caused by vibration. The purpose is primarily for preventive maintenance, not for predictive maintenance. This paper shows that vibration monitoring and diagnosis using Industrial 4.0 enables the complete predictive maintenance for all vibrating equipments in nuclear power plants with the convergence of internet of things; wireless technology, big data through periodic collection and artificial intelligence. Predictive maintenance using wireless technology is possible in all areas of nuclear power plants and in all systems, but it should satisfy regulatory guides on electromagnetic interference and cyber security.

원자력발전 엔지니어링능력의 자립전략

  • 정근모
    • Nuclear industry
    • /
    • no.3_4 s.12
    • /
    • pp.25-33
    • /
    • 1983
  • 본고는 지난 1월23일부터 26일까지 미국 캘리포니아주의 샌디애고에서 개최되었던 미국원자력학회(ANS)의 'Executive Conference on Technical Aspects of International Nuclear Commerce' 석상에서 필자가 발표한 'A Strategy for Self-reliance in Nuclear Power Engineering Capability' 원문을 전문 번역한 것이다.

  • PDF