• Title/Summary/Keyword: nuclear organizations

Search Result 112, Processing Time 0.02 seconds

Multi-unit risk assessment of nuclear power plants: Current status and issues

  • Yang, Joon-Eon
    • Nuclear Engineering and Technology
    • /
    • v.50 no.8
    • /
    • pp.1199-1209
    • /
    • 2018
  • After the Fukushima-Daiichi accident in 2011, the multi-unit risk, i.e., the risk due to several nuclear power plants (NPPs) in a site has become an important issue in several countries such as Korea, Canada, and China. However, the multi-unit risk has been discussed for a long time in the nuclear community before the Fukushima-Daiichi nuclear accident occurred. The regulatory authorities around the world and the international organizations had proposed requirements or guidelines to reduce the multi-unit risk. The concerns regarding the multi-unit risk can be summarized in the following three questions: How much the accident of an NPP in a site affects the safety of other NPPs in the same site? What is the total risk of a site with many NPPs? Will the risk of the simultaneous accidents at several NPPs in a site such as the Fukushima Daiichi accident be low enough? The multi-unit risk assessment (MURA) in an integrated framework is a practical approach to obtain the answers for the above questions. Even though there were few studies to assess the multi-unit risk before the Fukushima-Daiichi nuclear accident, there are still several issues to be resolved to perform the complete MURA. This article aims to provide an overview of the multi-unit risk issues and its assessment. We discuss the several critical issues in the current MURA to get useful insights regarding the multi-unit risk with the current state art of probabilistic safety assessment (PSA) technologies. Also, the qualitative answers for the above questions are addressed.

IDENTIFICATION AND EVALUATION OF HUMAN FACTORS ISSUES ASSOCIATED WITH EMERGING NUCLEAR PLANT TECHNOLOGY

  • O'Hara, John M.;Higgins, James C.;Brown, William S.
    • Nuclear Engineering and Technology
    • /
    • v.41 no.3
    • /
    • pp.225-236
    • /
    • 2009
  • This study has identified human performance research issues associated with the implementation of new technology in nuclear power plants (NPPs). To identify the research issues, current industry developments and trends were evaluated in the areas of reactor technology, instrumentation and control technology, human-system integration technology, and human factors engineering (HFE) methods and tools. The issues were prioritized into four categories based on evaluations provided by 14 independent subject matter experts representing vendors, utilities, research organizations and regulators. Twenty issues were categorized into the top priority category. The study also identifies the priority of each issue and the rationale for those in the top priority category. The top priority issues were then organized into research program areas of: New Concepts of Operation using Multi-agent Teams, Human-system Interface Design, Complexity Issues in Advanced Systems, Operating Experience of New and Modernized Plants, and HFE Methods and Tools. The results can serve as input to the development of a long-term strategy and plan for addressing human performance in these areas to support the safe operation of new NPPs.

Separation and Recovery for the Analysis of Radioiodine in RI Wastes (RI 폐기물 내 방사성요오드 분석을 위한 분리 및 회수)

  • Kang, Sang-Hoon;Han, Sun-Ho;Lee, Heung-N.;Jee, Kwang-Yong;Lee, In-Koo
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.5 no.4
    • /
    • pp.267-272
    • /
    • 2007
  • Various kinds of RI wastes are discharged from licensed organizations of radioisotopes les such as hospitals and clinic organizations, educational organizations, research institutions, and public organizations. Radioiodines such as $^{125}I\;and\;^{131}I$ are radioisotopes mainly used in nuclear medicine and industry. A method for the determination of radioiodines in RI wastes has been applied to measure low level activity using acid decomposition method and HPGe gamma ray spectrometer. Prior to analysis of real samples, $^{131}I$ reference solution and 10 g of yellow tissue paper was added to flask in mantle and was heated in 100 mL of 0.4 N $K_2Cr_2O_7$ and 100 mL of 9 M $H_2SO_4$, and then distilled after adding 10 mL of 30% $H_2PO_3$ and 1 mL of 30% $H_2O_2$. The condensed iodine by circulator was extracted into $CCl_4$, then back-extracted into the aqueous phase with 10 mL of 5% $K_2SO_2$ solution. Finally, $^{131}I$ was measured at 364.48 keV using HPGe gamma ray spectrometer after precipitation and filtration. Chemical yield of three steps such as acid decomposition process, chemical separation process, and precipitation and filtration process was more han 94% respectively, MDA(Minimum Detectable Activity) of $^{131}I$ at this analytical condition was 0.6 Bq/g.

  • PDF

Policy Initiatives to Establish a National Nuclear Education & Training System (국가 차원의 원자력 교육훈련체계 구축을 위한 정책 구상)

  • Ko, Kyungmin;Park, Min-Cheol;Park, Jae-Woo
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.12 no.4
    • /
    • pp.253-265
    • /
    • 2014
  • Nuclear education & training is an important issue for sustainability of nuclear energy and the safety of the nuclear power plant. The purpose of this paper is to present policy initiatives for establishment of the national nuclear education & training system. It analyzed current status of nuclear manpower and nuclear education & training systems of Korean nuclear organizations and government strategic plans for nuclear manpower education & training. The features of the current nuclear education & training in Korea are institutional diversification and decentralization in Industry-University-Research system. However, linkages and cooperation systematically integrated between institutions are very weak. In addition, duplicated education & training programs and resource allocation, and the resultant inefficiency have been raised as a problem. Therefore, this paper proposed the national nuclear education & training system model as a macro policy initiatives and construction of control tower that manage and adjust overall nuclear education & training.

Consideration for Application of 3D Printing Technology to Nuclear Power Plant (3D프린팅 기술의 원전 적용을 위한 고찰)

  • Jang, Kyung-Nam;Choi, Sung-Nam;Lee, Sung-Ho
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.16 no.1
    • /
    • pp.117-124
    • /
    • 2020
  • 3D printing is a technology that has significantly grown in recent years, particularly in the aerospace, defense, and medical sectors where it offers significant potential cost savings and reduction of the supply chain by allowing parts to be manufactured on-site rather than at a distance supplier. In nuclear industry, 3D printing technology should be applied according to the manufacturing trend change. For the application of 3D printing technology to the nuclear power plant, several problems, including the absence of code & standards of materials, processes and testing & inspection methods etc, should be solved. Preemptively, the improvement of reliability of 3D printing technology, including mechanical properties, structural performance, service performance and aging degradation of 3D printed parts should be supported. These results can be achieved by collaboration of many organizations such as institute, 3D printer manufacturer, metal powder supplier, nuclear part manufacturer, standard developing organization, and nuclear utility.

Review on Regulatory and Technical Standards of Radiation Protection for Lens of the Eye (수정체 방사선 방호에 관한 규제기준 및 기술기준 검토)

  • Si Young Kim;Seok-Ju Hwang;Jae Seong Kim;Jung-Kwon Son
    • Journal of Radiation Industry
    • /
    • v.18 no.1
    • /
    • pp.1-7
    • /
    • 2024
  • The International Commission on Radiological Protection (ICRP) lowered the annual equivalent dose limit of lens of the eye for radiation workers from 150 to 20 mSv in April 2011. This trend of lowering the equivalent dose limit for radiation workers has been observed worldwide, including international organizations such as the International Atomic Energy Agency (IAEA), International Organization for Standardization (ISO) and the European Commission (EC). In 2016, the Nuclear Safety and Security Commission of South Korea published research results that included a proposal for lowering the equivalent dose limit of lens of the eye for radiation workers in line with the ICRP recommendation. However, as of now, South Korea's Nuclear Safety Act and related regulations still specify an annual equivalent dose limit of lens of the eye as 150 mSv for radiation workers. The IAEA and ISO have issued guidelines regarding radiation protection for lens of the eye and recommended a dose level for the lens of the eye at 5 or 6 mSv per year for periodic monitoring of the equivalent dose for the lens of the eye.

Impact of Nuclear Tests on Deforestation in North Korea using Google Earth-Based Spatial Images

  • Ki, Junghoon;Sung, Minki;Choi, Choongik
    • Journal of People, Plants, and Environment
    • /
    • v.22 no.6
    • /
    • pp.563-573
    • /
    • 2019
  • The North Korean government conducted its first nuclear test in 2006 and more recently the sixth nuclear test on September 3, 2017. In order to identify how North Korea's nuclear tests have affected the environment, a scientific approach is required. Although North Korea's nuclear tests and their environmental destruction are not a severe threat to the environment of the Korean Peninsula at this time, identifying environmental damage and taking countermeasures in advance are essential to minimize their potential threats to the environments. The purpose of this study is to study the environmental impact of North Korea's nuclear tests using Google Earth image analysis. As a method of the study, we compare Google Earth images taken before and after each nuclear test was conducted in North Korea. To overcome limitations of the suggested comparison method, we cross-checked our results with those of previous scientific research. After the 1st-3rd nuclear tests, green spaces were found to be considerably reduced. In particular, when comparing the Google Earth images before and after the second nuclear test, some ground subsidences were observed. Such subsidences can cause tunnels on the mountainsides and cracks in rocks around the mountains, leading to the release of radioactive materials and contaminating groundwater. Besides, after the 4th-6th nuclear tests, decay and deforestation were observed not in the nuclear test sites, but in their surrounding areas. Especially after the 5th and 6th nuclear tests, the topography and the forests of the surrounding areas were severely damaged. In relation to North Korea's nuclear tests and their impact on the natural environment, we need to prepare various policy measures to reduce North Korea's environmental pollution and natural environment destruction. Those policy measures include the establishment of various cooperative governance between the Korean government, the private sector, the academia, NGOs, and international organizations.

KHNP-JIT Development for the Effective Use of Nuclear Power Plant Operating Experiences (원자력발전소 운전경험 활용 증진을 위한 KHNP-JIT 개발)

  • Hur, Nam Young;Lee, Sang Hoon;Kim, Je Hun
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.9 no.1
    • /
    • pp.31-34
    • /
    • 2013
  • According to the increase in numbers and operation time of domestic Nuclear Power Plants, KHNP(Korea Hydro & Nuclear Power) has many operating experiences. These show that most of the accidents repeatedly occurred not by the new sources or mechanism like the Fukushima Accident, but by the human and equipment errors from normal habits, process, design, maintenance etc.. These lessons show that the well-established systematic approach is requested to take lessons from past experiences. For this reason, developed countries established INPO, WANO, COG as a non-profit professional organizations to actively share their operating experiences. KHNP is also trying to promote the utilization of operating experiences. As part of this effort, KHNP is developing the KHNP-JIT, reflecting the overseas JIT and the domestic experiences.

Quality Assurance system for Nuclear Power Plant Equipment Qualification in Korea (국내 원전기기 성능검증 품질보증체계 구축에 관한 연구)

  • 남지희;이영건;임남진
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.25 no.3
    • /
    • pp.1-8
    • /
    • 2002
  • This paper investigates different QA standards such as KEPIC QAP, KEPIC END 1200, ISO/1EC 17025 etc. and as a result defines QA elements for Nuclear Power Plant equipment qualification(EQ) in Korea. This paper also proposes a practical QA certification system appropriate for an Integrated Organization for EQ which is being planned to be established in Korea. Since the level of the Korean EQ technology is comparatively low, the Korean manufacturers of the Nuclear Power Plant(NPP) equipment have usually used overseas EQ services. The EQ related organizations in Korea are making efforts to construct the integrated EQ system. In connection with this, it is required that the QA elements and QA certification system suitable for EQ in Korea be developed.

Round robin analysis of vessel failure probabilities for PTS events in Korea

  • Jhung, Myung Jo;Oh, Chang-Sik;Choi, Youngin;Kang, Sung-Sik;Kim, Maan-Won;Kim, Tae-Hyeon;Kim, Jong-Min;Kim, Min Chul;Lee, Bong Sang;Kim, Jong-Min;Kim, Kyuwan
    • Nuclear Engineering and Technology
    • /
    • v.52 no.8
    • /
    • pp.1871-1880
    • /
    • 2020
  • Round robin analyses for vessel failure probabilities due to PTS events are proposed for plant-specific analyses of all types of reactors developed in Korea. Four organizations, that are responsible for regulation, operation, research and design of the nuclear power plant in Korea, participated in the round robin analysis. The vessel failure probabilities from the probabilistic fracture mechanics analyses are calculated to assure the structural integrity of the reactor pressure vessel during transients that are expected to initiate PTS events. The failure probabilities due to various parameters are compared with each other. All results are obtained based on several assumptions about material properties, flaw distribution data, and transient data such as pressure, temperature, and heat transfer coefficient. The realistic input data can be used to obtain more realistic failure probabilities. The various results presented in this study will be helpful not only for benchmark calculations, result comparisons, and verification of PFM codes developed but also as a contribution to knowledge management for the future generation.