• Title/Summary/Keyword: nuclear localization signal (NLS) sequence

Search Result 9, Processing Time 0.026 seconds

Nuclear Localization of Chfr Is Crucial for Its Checkpoint Function

  • Kwon, Young Eun;Kim, Ye Seul;Oh, Young Mi;Seol, Jae Hong
    • Molecules and Cells
    • /
    • v.27 no.3
    • /
    • pp.359-363
    • /
    • 2009
  • Chfr, a checkpoint with FHA and RING finger domains, plays an important role in cell cycle progression and tumor suppression. Chfr possesses the E3 ubiquitin ligase activity and stimulates the formation of polyubiquitin chains by Ub-conjugating enzymes, and induces the proteasome-dependent degradation of a number of cellular proteins, including Plk1 and Aurora A. While Chfr is a nuclear protein that functions within the cell nucleus, how Chfr is localized in the nucleus has not been clearly demonstrated. Here, we show that nuclear localization of Chfr is mediated by nuclear localization signal (NLS) sequences. To reveal the signal sequences responsible for nuclear localization, a short lysine-rich stretch (KKK) at amino acid residues 257-259 was replaced with alanine, which completely abolished nuclear localization. Moreover, we show that nuclear localization of Chfr is essential for its checkpoint function but not for its stability. Thus, our results suggest that NLS-mediated nuclear localization of Chfr leads to its accumulation within the nucleus, which may be important in the regulation of Chfr activation and Chfr-mediated cellular processes, including cell cycle progression and tumor suppression.

Nuclear Effectors in Plant Pathogenic Fungi

  • Surajit De Mandal;Junhyun Jeon
    • Mycobiology
    • /
    • v.50 no.5
    • /
    • pp.259-268
    • /
    • 2022
  • The nuclear import of proteins is a fundamental process in the eukaryotes including plant. It has become evident that such basic process is exploited by nuclear effectors that contain nuclear localization signal (NLS) and are secreted into host cells by fungal pathogens of plants. However, only a handful of nuclear effectors have been known and characterized to date. Here, we first summarize the types of NLSs and prediction tools available, and then delineate examples of fungal nuclear effectors and their roles in pathogenesis. Based on the knowledge on NLSs and what has been gleaned from the known nuclear effectors, we point out the gaps in our understanding of fungal nuclear effectors that need to be filled in the future researches.

Functional Identification of a Nuclear Localization Signal of MYB2 Protein in Giardia lamblia

  • Kim, Juri;Shin, Mee Young;Park, Soon-Jung
    • Parasites, Hosts and Diseases
    • /
    • v.58 no.6
    • /
    • pp.675-679
    • /
    • 2020
  • MYB2 protein was identified as a transcription factor that showed encystation-induced expression in Giardia lamblia. Although nuclear import is essential for the functioning of a transcription factor, an evident nuclear localization signal (NLS) of G. lamblia MYB2 (GlMYB2) has not been defined. Based on putative GlMYB2 NLSs predicted by 2 programs, a series of plasmids expressing hemagglutinin (HA)-tagged GlMYB2 from the promoter of G. lamblia glutamate dehydrogenase were constructed and transfected into Giardia trophozoites. Immunofluorescence assays using anti-HA antibodies indicated that GlMYB2 amino acid sequence #507-#530 was required for the nuclear localization of GlMYB2, and this sequence was named as NLSGlMYB2. We further verified this finding by demonstrating the nuclear location of a protein obtained by the fusion of NLSGlMYB2 and G. lamblia glyceraldehyde 3-phosphate dehydrogenase, a non-nuclear protein. Our data on GlMYB2 will expand our understanding on NLSs functioning in G. lamblia.

Efficient Gene Targeting using Nuclear Localization Signal (NLS) and Negative Selection Marker Gene in Porcine Somatic Cells

  • Kim, Hye Min;Lee, Sang Mi;Park, Hyo Young;Kang, Man-Jong
    • Reproductive and Developmental Biology
    • /
    • v.38 no.2
    • /
    • pp.71-77
    • /
    • 2014
  • The specific genetic modification in porcine somatic cells by gene targeting has been very difficult because of low efficiency of homologous recombination. To improve gene targeting, we designed three kinds of knock-out vectors with ${\alpha}1,3$-galactosyltransferase gene (${\alpha}1,3$-GT gene), DT-A/pGT5'/neo/pGT3', DT-A/NLS/pGT5'/neo/pGT3' and pGT5'/neo/ pGT3'/NLS. The knock-out vectors consisted of a 4.8-kb fragment as the 5' recombination arm (pGT5') and a 1.9-kb fragment as the 3' recombination arm (pGT3'). We used the neomycin resistance gene (neo) as a positive selectable marker and the diphtheria toxin A (DT-A) gene as a negative selectable marker. These vectors have a neo gene insertion in exon 9 for inactivation of ${\alpha}1,3$-GT locus. DT-A/pGT5'/neo/pGT3' vector contain only positive-negative selection marker with conventional targeting vector. DT-A/NLS/pGT5'/neo/pGT3' vector contain positive-negative selection marker and NLS sequences in upstream of 5' recombination arm which enhances nuclear transport of foreign DNA into bovine somatic cells. pGT5'/neo/pGT3'/NLS vector contain only positive selection marker and NLS sequence in downstream of 3' recombination arm, not contain negative selectable marker. For transfection, linearzed vectors were introduced into porcine ear fibroblasts by electroporation. After 48 hours, the transfected cells were selected with $300{\mu}g/ml$ G418 during 12 day. The G418-resistant colonies were picked, of which 5 colonies were positive for ${\alpha}1,3$-GT gene disruption in 3' PCR and southern blot screening. Three knock-out somatic cells were obtained from DT-A/NLS/ pGT5'/neo/pGT3' knock-out vector. Thus, these data indicate that gene targeting vector using nuclear localization signal and negative selection marker improve targeting efficiency in porcine somatic cells.

Targeting of Nuclear Encoded Proteins to Chloroplasts: a New Insight into the Mechanism

  • Lee, Yong-Jik;Kim, Yong-Woo;Pih, Kyeong-Tae;Hwang, Inhwan
    • Korean Journal of Plant Tissue Culture
    • /
    • v.27 no.5
    • /
    • pp.407-409
    • /
    • 2000
  • Outer envelope membrane proteins of chloroplasts encoded by the nuclear genome are transported without the N-terminal transit peptide. Here, we investigated the targeting mechanism of AtOEP7, an Arabidopsis homolog of small outer envelope membrane proteins in vivo. AtOEP7 was expressed transiently in protoplasts or stably in transgenic plants as fusion proteins with GFP. In both cases AtOEP7:GFP was targeted to the outer envelope membrane when assayed under a fluorescent microscope or by Western blot analysis. Except the transmembrane domain, deletions of the N- or C-terminal regions of AtOEP7 did not affect targeting although a region closed to the C-terminal side of the transmembrane domain affected the targeting efficiency. Targeting experiments with various hybrid transmembrane mutants revealed that the amino acid sequence of the transmembrane domain determines the targeting specificity The targeting mechanism was further studied using a fusion protein, AtOEP7:NLS:GFP, that had a nuclear localization signal. AtOEP7:NLS:GFP was efficiently targeted to the chloroplast envelope despite the presence of the nuclear localization signal. Taken together, these results suggest that the transmembrane domain of AtOEP7 functions as the sole determinant of targeting specificity and that AtOEP7 may be associated with a cytosolic component during translocation to the chloroplast envelope membrane.

  • PDF

Addition of an N-Terminal Poly-Glutamate Fusion Tag Improves Solubility and Production of Recombinant TAT-Cre Recombinase in Escherichia coli

  • Kim, A-Hyeon;Lee, Soohyun;Jeon, Suwon;Kim, Goon-Tae;Lee, Eun Jig;Kim, Daham;Kim, Younggyu;Park, Tae-Sik
    • Journal of Microbiology and Biotechnology
    • /
    • v.30 no.1
    • /
    • pp.109-117
    • /
    • 2020
  • Cre recombinase is widely used to manipulate DNA sequences for both in vitro and in vivo research. Attachment of a trans-activator of transcription (TAT) sequence to Cre allows TAT-Cre to penetrate the cell membrane, and the addition of a nuclear localization signal (NLS) helps the enzyme to translocate into the nucleus. Since the yield of recombinant TAT-Cre is limited by formation of inclusion bodies, we hypothesized that the positively charged arginine-rich TAT sequence causes the inclusion body formation, whereas its neutralization by the addition of a negatively charged sequence improves solubility of the protein. To prove this, we neutralized the positively charged TAT sequence by proximally attaching a negatively charged poly-glutamate (E12) sequence. We found that the E12 tag improved the solubility and yield of E12-TAT-NLS-Cre (E12-TAT-Cre) compared with those of TAT-NLS-Cre (TAT-Cre) when expressed in E. coli. Furthermore, the growth of cells expressing E12-TAT-Cre was increased compared with that of the cells expressing TAT-Cre. Efficacy of the purified TAT-Cre was confirmed by a recombination test on a floxed plasmid in a cell-free system and 293 FT cells. Taken together, our results suggest that attachment of the E12 sequence to TAT-Cre improves its solubility during expression in E. coli (possibly by neutralizing the ionic-charge effects of the TAT sequence) and consequently increases the yield. This method can be applied to the production of transducible proteins for research and therapeutic purposes.

Protein transduction of an antioxidant enzyme: subcellular localization of superoxide dismutase fusion protein in cells

  • Kim, Dae-Won;Kim, So-Young;Lee, Hwa;Lee, Yeum-Pyo;Lee, Min-Jung;Jeong, Min-Seop;Jang, Sang-Ho;Park, Jin-Seu;Lee, Kil-Soo;Kang, Tae-Cheon;Won, Moo-Ho;Cho, Sung-Woo;Kwon, Oh-Shin;Eum, Won-Sik;Choi, Soo-Young
    • BMB Reports
    • /
    • v.41 no.2
    • /
    • pp.170-175
    • /
    • 2008
  • In protein therapy, it is important for exogenous protein to be delivered into the target subcellular localization. To transduce a therapeutic protein into its specific subcellular localization, we synthesized nuclear localization signal (NLS) and membrane translocation sequence signal (MTS) peptides and produced a genetic in-frame SOD fusion protein. The purified SOD fusion proteins were efficiently transduced into mammalian cells with enzymatic activities. Immunofluorescence and Western blot analysis revealed that the SOD fusion proteins successfully transduced into the nucleus and the cytosol in the cells. The viability of cells treated with paraquat was markedly increased by the transduced fusion proteins. Thus, our results suggest that these peptides should be useful for targeting the specific localization of therapeutic proteins in various human diseases.

Isolation, characterization and expression of transcription factor ScDREB2 from wild, commercial and interspecific hybrid sugarcane in salinity condition

  • Chanprame, Sontichai;Promkhlibnil, Tanawan;Suwanno, Sakulrat;Laksana, Chanakan
    • Journal of Plant Biotechnology
    • /
    • v.46 no.2
    • /
    • pp.97-105
    • /
    • 2019
  • Dehydration Responsive Element Binding (DREB) gene is one of the essential transcription factors plants use for responding to stress conditions including salinity, drought, and cold stress. The purpose of this study was to isolate the full length and characterize the DREB gene from three different genotypes of sugarcane, wild, commercial cultivar, and interspecific hybrid sugarcane. The length of the gene, designated ScDREB was 789 bp, and coding for a putative polypeptide of 262 amino acid residues. Sequences of the gene were submitted to the GenBank database with accession numbers of KX280722.1, KX280721.1, and KX280719.1 for wild sugarcane, commercial cultivar (KPS94-13), and interspecific hybrid (Biotec2), respectively. In silico characterization indicated that the deduced polypeptide contains a putative nuclear localization signal (NLS) sequence, and a conserved AP2/ERF domain of the DREB family, at 82-140 amino residues. Based on multiple sequence alignment, sequences of the gene from the three sugarcane genotypes were classified in the DREB2 group. Gene expression analysis indicated, that ScDREB2 expression pattern in tested sugarcane was up-regulated by salt stress. When the plants were under 100 mM NaCl stress, relative expressions of the gene in leaves was higher than those in roots. In contrast, under 200 mM NaCl stress, relative expressions of the gene in roots was higher than those in leaves. This is the first report on cloning the full length and characterization, of ScDREB2 gene of sugarcane. Results indicate that ScDREB2 is highly responsive to salt stress.

Construction of Web-Based Database for Anisakis Research (고래회충 연구를 위한 웹기반 데이터베이스 구축)

  • Lee, Yong-Seok;Baek, Moon-Ki;Jo, Yong-Hun;Kang, Se-Won;Lee, Jae-Bong;Han, Yeon-Soo;Cha, Hee-Jae;Yu, Hak-Sun;Ock, Mee-Sun
    • Journal of Life Science
    • /
    • v.20 no.3
    • /
    • pp.411-415
    • /
    • 2010
  • Anisakis simplex is one of the parasitic nematodes, and has a complex life cycle in crustaceans, fish, squid or whale. When people eat under-processed or raw fish, it causes anisakidosis and also plays a critical role in inducing serious allergic reactions in humans. However, no web-based database on A. simplex at the level of DNA or protein has been so far reported. In this context, we constructed a web-based database for Anisakis research. To build up the web-based database for Anisakis research, we proceeded with the following measures: First, sequences of order Ascaridida were downloaded and translated into the multifasta format which was stored as database for stand-alone BLAST. Second, all of the nucleotide and EST sequences were clustered and assembled. And EST sequences were translated into amino acid sequences for Nuclear Localization Signal prediction. In addition, we added the vector, E. coli, and repeat sequences into the database to confirm a potential contamination. The web-based database gave us several advantages. Only data that agrees with the nucleotide sequences directly related with the order Ascaridida can be found and retrieved when searching BLAST. It is also very convenient to confirm contamination when making the cDNA or genomic library from Anisakis. Furthermore, BLAST results on the Anisakis sequence information can be quickly accessed. Taken together, the Web-based database on A. simplex will be valuable in developing species specific PCR markers and in studying SNP in A. simplex-related researches in the future.