Browse > Article
http://dx.doi.org/10.4014/jmb.1909.09028

Addition of an N-Terminal Poly-Glutamate Fusion Tag Improves Solubility and Production of Recombinant TAT-Cre Recombinase in Escherichia coli  

Kim, A-Hyeon (Department of Life Sciences, Gachon University)
Lee, Soohyun (Department of Research and Development, LumiMac, Inc.)
Jeon, Suwon (Department of Life Sciences, Gachon University)
Kim, Goon-Tae (Department of Life Sciences, Gachon University)
Lee, Eun Jig (Department of Internal Medicine, Yonsei University College of Medicine)
Kim, Daham (Department of Internal Medicine, Yonsei University College of Medicine)
Kim, Younggyu (Department of Research and Development, LumiMac, Inc.)
Park, Tae-Sik (Department of Life Sciences, Gachon University)
Publication Information
Journal of Microbiology and Biotechnology / v.30, no.1, 2020 , pp. 109-117 More about this Journal
Abstract
Cre recombinase is widely used to manipulate DNA sequences for both in vitro and in vivo research. Attachment of a trans-activator of transcription (TAT) sequence to Cre allows TAT-Cre to penetrate the cell membrane, and the addition of a nuclear localization signal (NLS) helps the enzyme to translocate into the nucleus. Since the yield of recombinant TAT-Cre is limited by formation of inclusion bodies, we hypothesized that the positively charged arginine-rich TAT sequence causes the inclusion body formation, whereas its neutralization by the addition of a negatively charged sequence improves solubility of the protein. To prove this, we neutralized the positively charged TAT sequence by proximally attaching a negatively charged poly-glutamate (E12) sequence. We found that the E12 tag improved the solubility and yield of E12-TAT-NLS-Cre (E12-TAT-Cre) compared with those of TAT-NLS-Cre (TAT-Cre) when expressed in E. coli. Furthermore, the growth of cells expressing E12-TAT-Cre was increased compared with that of the cells expressing TAT-Cre. Efficacy of the purified TAT-Cre was confirmed by a recombination test on a floxed plasmid in a cell-free system and 293 FT cells. Taken together, our results suggest that attachment of the E12 sequence to TAT-Cre improves its solubility during expression in E. coli (possibly by neutralizing the ionic-charge effects of the TAT sequence) and consequently increases the yield. This method can be applied to the production of transducible proteins for research and therapeutic purposes.
Keywords
Cre recombinase; inclusion body; solubility; polyglutamate; trans-activator of transcription;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Peitz M, Pfannkuche K, Rajewsky K, Edenhofer F. 2002. Ability of the hydrophobic FGF and basic TAT peptides to promote cellular uptake of recombinant Cre recombinase: a tool for efficient genetic engineering of mammalian genomes. Proc. Natl. Acad. Sci. USA 99: 4489-4494.   DOI
2 Mitraki A, Fane B, Haase-Pettingell C, Sturtevant J, King J. 1991. Global suppression of protein folding defects and inclusion body formation. Science 253: 54-58.   DOI
3 Patra AK, Mukhopadhyay R, Mukhija R, Krishnan A, Garg LC, Panda AK. 2000. Optimization of Inclusion Body Solubilization and Renaturation of Recombinant Human Growth Hormone from Escherichia coli. Protein Expres. Purif. 18: 182-192.   DOI
4 Singh SM, Panda AK. 2005. Solubilization a nd r efolding of bacterial inclusion body proteins. J. Biosci. Bioeng. 99: 303-310.   DOI
5 Chumanov R S, B urgess RR. 2010. Expression, p urification, and refolding of active Nrf2 transcription factor fused to protein transduction TAT tag. Protein Expres Purif. 74: 280-288.   DOI
6 Singh A, Upadhyay V, Upadhyay AK, Singh SM, Panda AK. 2015. Protein recovery from inclusion bodies of Escherichia coli using mild solubilization process. Microb. Cell Fact. 14: 41.   DOI
7 He C, Ohnishi K. 2017. Efficient renaturation of inclusion body proteins denatured by SDS. Biochem. Biophys. Res. Commun. 490: 1250-1253.   DOI
8 Kang Q, Sun Z, Zou Z, Wang M, Li Q, Hu X, Li N. 2018. Cell-penetrating peptide-driven Cre recombination in porcine primary cells and generation of marker-free pigs. PLoS One 13: e0190690.   DOI
9 Ri zkia PR, Silaban S, Hasan K, Kamara DS, Subroto T, Soemitro S, et al. 2015. Effect of Isopropyl-${\beta}$-Dthiogalactopyranoside concentration on prethrombin-2 recombinan gene expression in Escherichia Coli ER2566. Procedia Chem. 17: 118-124.   DOI
10 Lyu SK, Kwon H. 2015. Preparation of cell-permeable Cre recombinase by expressed protein ligation. BMC Biotechnol. 15: 7.   DOI
11 Pugach EK, Richmond PA, Azofeifa JG, Dowell RD, Leinwand LA. 2015. Prolonged Cre expression driven by the alpha-myosin heavy chain promoter can be cardiotoxic. J. Mol. Cell Cardiol. 86: 54-61.   DOI
12 Eum WS, Shin MJ, Lee CH, Yeo HJ, Yeo EJ, Choi YJ, et al. 2019. Neuroprotective effects of Tat-ATOX1 protein against MPP(+)-induced SH-SY5Y cell deaths and in MPTP-induced mouse model of Parkinson's disease. Biochimie 156: 158-168.   DOI
13 Vargas N, Alvarez-Cubela S, Giraldo JA, Nieto M, Fort NM, Cechin S, et al. 2011. TAT-mediated transduction of MafA protein in utero results in enhanced pancreatic insulin expression and changes in islet morphology. PLoS One 6: e22364.   DOI
14 Zhao B, Wang Y, Zhang Y, Li Y, Zhang X, Xu Y, et al. 2013. TAT-mediated gp96 transduction to APCs enhances gp96-induced antiviral and antitumor T cell responses. Vaccine 31: 545-552.   DOI
15 Oberdoerffer P, Otipoby KL, Maruyama M, Rajewsky K. 2003. Unidirectional Cre-mediated genetic inversion in mice using the mutant loxP pair lox66/lox71. Nucleic Acids Res. 31: e140.   DOI
16 Assali DR, Hsu CT, Gunapala KM, Aguayo A, McBurney M, Steele AD. 2018. Food anticipatory activity on a calorierestricted diet is independent of Sirt1. PLoS One 13: e0199586.   DOI
17 Jo D, Nashabi A, Doxsee C, Lin Q, Unutmaz D, Chen J, Ruley HE. 2001. Epigenetic regulation of gene structure and function with a cell-permeable Cre recombinase. Nat. Biotechnol. 19: 929-933.   DOI
18 Zou Z, Sun Z, Li P, Feng T, Wu S. 2016. Cre fused with RVG peptide mediates targeted genome editing in mouse brain cells in vivo. Int. J. Mol. Sci. 17(12).pii: E2104
19 Sauer B. 1994. Site-specific recombination: developments and applications. Curr. Opin. Biotechnol. 5: 521-527.   DOI
20 Li Y, Schang G, Wang Y, Zhou X, Levasseur A, Boyer A, et al. 2018. Conditional D eletion of F OXL2 a nd S MAD4 i n Gonadotropes of adult mice causes isolated FSH deficiency. Endocrinology 159: 2641-2655.   DOI
21 Lin Q, Jo D, Gebre-Amlak KD, Ruley HE. 2004. Enhanced cell-permeant Cre protein for site-specific recombination in cultured cells. BMC Biotechnol. 4: 25.   DOI
22 Ryder E, Doe B, Gleeson D, Houghton R, Dalvi P, Grau E, et al. 2014. Rapid conversion of EUCOMM/KOMP-CSD alleles in mouse embryos using a cell-permeable Cre recombinase. Transgenic Res. 23: 177-185.   DOI
23 Hiromura M, Okada F, Obata T, Auguin D, Shibata T, Roumestand C, Noguchi M. 2004. Inhibition of Akt kinase activity by a peptide spanning the beta A strand of the proto-oncogene TCL1. J. Biol. Chem. 279: 53407-53418.   DOI
24 Violini S, Sharma V, Prior JL, Dyszlewski M, Piwnica- Worms D. 2002. Evidence for a plasma membrane-mediated permeability barrier to Tat basic domain in well-differentiated epithelial cells: lack of correlation with heparan sulfate. Biochemistry 41: 12652-12661.   DOI
25 Ya ng WC, Welsh JP, Lee J, Cooke JP, Swartz JR. 2011. Solubility partner IF2 Domain I enables high yield synthesis of transducible transcription factors in Escherichia coli. Protein Expres. Purif. 80: 145-151.   DOI
26 Lange A, Mills RE, Lange CJ, Stewart M, Devine SE, Corbett AH. 2007. Classical nuclear localization signals: definition, function, and interaction with importin alpha. J. Biol. Chem. 282: 5101-5105.   DOI
27 Kim SJ, Ha GS, Lee G, Lim SI, Lee CM, Yang YH, et al. 2018. Enhanced expression of soluble antibody fragments by low-temperature and overdosing with a nitrogen source. Enzyme Microb. Technol. 115: 9-15.   DOI
28 M artinez-Alonso M, Garcia-Fruitos E, Villaverde A. 2008. Yield, solubility and conformational quality of soluble proteins are not simultaneously favored in recombinant Escherichia coli. Biotechnol. Bioeng. 101: 1353-1358.   DOI
29 Radis-Baptista G, Campelo IS, Morlighem JRL, Melo LM, Freitas VJF. 2017. Cell-penetrating peptides (CPPs): From delivery of nucleic acids and antigens to transduction of engineered nucleases for application in transgenesis. J. Biotechnol. 252: 15-26.   DOI
30 Do Kwon Y, Oh SK, Kim HS, Ku SY, Kim SH, Choi YM, et al. 2005. Cellular manipulation of human embryonic stem cells by TAT-PDX1 protein transduction. Mol. Ther. 12: 28-32.   DOI
31 Xia H, Gao X, Gu G, Liu Z, Hu Q, Tu Y, et al. 2012. Penetratin-functionalized PEG-PLA nanoparticles for brain drug delivery. Int. J. Pharm. 436: 840-850.   DOI
32 Frankel AD, Pabo CO. 1988. Cellular uptake of the tat protein from human immunodeficiency virus. Cell 55: 1189-1193.   DOI
33 Wadia JS, Stan RV, Dowdy SF. 2004. Transducible TAT-HA fusogenic peptide enhances escape of TAT-fusion proteins after lipid raft macropinocytosis. Nat. Med. 10: 310-315.   DOI
34 Kosugi S, Hasebe M, Matsumura N, Takashima H, Miyamoto-Sato E, Tomita M, et al. 2009. Six classes of nuclear localization signals specific to different binding grooves of importin alpha. J. Biol. Chem. 284: 478-485.   DOI