• Title/Summary/Keyword: nuclear demand

Search Result 247, Processing Time 0.025 seconds

Multilateral Nuclear Cooperation in East Asia; The First Step Toward the Formation of a New Cooperation (동아시아 지역에서의 다자간 원자력 협력 방안: 새로운 원자력 협력체제 결성을 위한 첫 번째 제안)

  • Hwang Yong-Soo;Kwon Eun-Ha;Seo Eun-Jin;Whang Joo-ho
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.3 no.3
    • /
    • pp.167-176
    • /
    • 2005
  • Demand on the nuclear energy in East Asian countries has been grown rapidly to support economic development. After 9.11, nuclear security has become the world wide issue. In addition, unlike to other region, some countries are considering the introduction of nuclear power plants. To meet the challenges a new regional multilateral nuclear approach is proposed aiming at assurance of supply and non -proliferation. The new proposal is based on the principles of confidence building, volunteering, and incentives. The step wise approach is recommended to implement the multilateral system in East Asia.

  • PDF

RELIABLE ROLE OF NUCLEAR POWER GENERATION UNDER CO2 EMISSION CONSTRAINTS

  • Lee, Young-Eal;Jung, Young-Beom
    • Nuclear Engineering and Technology
    • /
    • v.39 no.5
    • /
    • pp.655-662
    • /
    • 2007
  • Most decision makers in the electricity industry plan their electric power expansion program by considering only a least cost operation, even when circumstances change with differing complexities. It is necessary, however, to analyze a long-term power expansion plan from various points of view, such as environmental friendliness, benefit of a carbon reduction, and system reliability, as well as least cost operation. The objective and approach of this study is to analyze the proper role of nuclear power in a long-term expansion plan by comparing different scenarios in terms of the system cost changes, $CO_2$ emission reduction, and system reliability in relation to the Business-As-Usual (BAU). The conclusion of this paper makes it clear that the Korean government cannot but expand the nationwide nuclear power program, because an increased energy demand is inevitable and other energy resources will not provide an adequate solution from an economic and sustainability point of view. The results of this analysis will help the Korean government in its long-term resource planning of what kinds of role each electric resource can play in terms of a triangular dilemma involving economics, environmental friendliness, and a stable supply of electricity.

A Systems Engineering Approach to Multi-Physics Load Follow Simulation of the Korean APR1400 Nuclear Power Plant

  • Mahmoud, Abd El Rahman;Diab, Aya
    • Journal of the Korean Society of Systems Engineering
    • /
    • v.16 no.2
    • /
    • pp.1-15
    • /
    • 2020
  • Nuclear power plants in South Korea are operated to cover the baseload demand. Hence they are operated at 100% rated power and do not deploy power tracking control except for startup, shutdown, or during transients. However, as the contribution of renewable energy in the energy mix increases, load follow operation may be needed to cover the imbalance between consumption and production due to the intermittent nature of electricity produced from the conversion of wind or solar energy. Load follow operation may be quite challenging since the operators need to control the axial power distribution and core reactivity while simultaneously conducting the power maneuvering. In this paper, a systems engineering approach for multi-physics load follow simulation of APR1400 is performed. RELAP5/SCDAPSIM/MOD3.4/3DKIN multi-physics package is selected to simulate the Korean Advanced Power Reactor, APR1400, under load follow operation to reflect the impact of feedback signals on the system safety parameters. Furthermore, the systems engineering approach is adopted to identify the requirements, functions, and physical architecture to provide a set of verification and validation activities that guide this project development by linking each requirement to a validation or verification test with predefined success criteria.

Energy Transition Policy and Social Costs of Power Generation in South Korea (에너지 전환정책과 발전의 사회적 비용 -제7차와 제8차 전력수급기본계획 비교-)

  • Kim, Kwang In;Kim, Hyunsook;Cho, In-Koo
    • Environmental and Resource Economics Review
    • /
    • v.28 no.1
    • /
    • pp.147-176
    • /
    • 2019
  • This paper uses research on the Levelized Cost of Electricity (LCOE) in South Korea to conduct a simulation analysis on the impact of nuclear power dependency and usage rates on the social costs of power generation. We compare the $7^{th}$ basic plan for long-term electricity supply and demand, which was designed to increase nuclear power generation, to the $8^{th}$ basic plan for long-term electricity supply and demand that decreased nuclear power generation and increased renewable energy generation in order to estimate changes in social costs and electricity rates according to the power generation mix. Our environmental generation mix simulation results indicate that social costs may increase by 22% within 10 years while direct generation cost and electricity rates based on generation and other production costs may increase by as much as 22% and 18%, respectively. Thus we confirm that the power generation mix from the $8^{th}$ basic plan for long-term electricity supply and demand compared to the $7^{th}$ plan increases social costs of generation, which include environmental external costs.

An Analysis of Changes in Power Generation and Final Energy Consumption in Provinces to Achieve the Updated Nationally Determined Contribution (NDC) (국가 온실가스 감축목표(NDC) 상향안 달성을 위한 17개 광역시도별 발전 및 최종에너지 소비 변화 분석)

  • Minyoung Roh;Seungho Jeon;Muntae Kim;Suduk Kim
    • Environmental and Resource Economics Review
    • /
    • v.31 no.4
    • /
    • pp.865-885
    • /
    • 2022
  • Korean government updated her Nationally Determined Contribution (NDC) in 2021 and announced the target and various measures for reductions. Among the many issues, final energy demand and renewable energy power mix for 17 provinces to achieve the target are being analyzed using GCAM-Korea. Simulation results show that final energy demand of 2030 is approximated at the similar level to that of 2018. This is being enabled by the conservation of coal with higher electrification especially in industry sector. Higher power demand with lower coal consumption in final energy consumption is shown to be provided by 33.1% of renewable, 24.6% of gas, and 18.0% of nuclear power generation in 2030. Meanwhile, the share of coal-fired power generation is expected to be reduced to 12.8%. Major future power provider becomes Gyeongbuk (Nuclear), Gyeonggi (Gas), Jeonnam (Nuclear, Gas) and Gangwon (PV, Wind), compared to one of current major power provider Chungnam (Coal). This analysis is expected to provide a useful insight toward the national and provincial energy and climate change policy.

Design and dynamic simulation of a molten salt THS coupled to SFR

  • Areai Nuerlan;Jin Wang;Jun Yang;Zhongxiao Guo;Yizhe Liu
    • Nuclear Engineering and Technology
    • /
    • v.56 no.4
    • /
    • pp.1135-1144
    • /
    • 2024
  • With the increasing ratio of renewables in the grid, a low-carbon and stable base load source that also is capable of load tracking is in demand. Sodium cooled fast reactors (SFRs) coupled to thermal heat storage system (THS) is a strong candidate for the need. This research focuses on the designing and performance validation of a two-tank THS based on molten salt to integrate with a 280 MWth sodium cooled fast reactor. Designing of the THS includes the vital component, sodium-to-salt heat exchanger which is a technology gap that needs to be filled, and designing and parameter selection of the tanks and related pumps. Modeling of the designed THS is conducted followed by the description of operation strategies and control logics of the THS. Finally, the dynamic simulation of the designed THS is conducted based on Fortran. Results show, the proposed power system meets the need of the design requirements to store heat for 18 h during a day and provide 500 MWth for peak demand for the rest of the day.

Evaluation of Unavailability of the Containment Spray System by use of a Cause-Consequence Chart

  • Park, Gwi-Tae;Chun, Hee-Young;Lee, Chang-Kun
    • Nuclear Engineering and Technology
    • /
    • v.11 no.3
    • /
    • pp.195-202
    • /
    • 1979
  • In this paper, a cause-consequence chart is applied to evaluate the probability that the containment spray system in a nuclear power plant may not be woring properly, given a demand for spryaing at loss of coolant accident (LOCA). It is shown how the diagram provides a basis for calculating two probability measures for malfunctioning of this system, in case the test policy of the system is taken into account, i.e., average probability that the containment spray cannot be established, and average probability that the containment spray is established : spray stops before the required operating time is over.

  • PDF

A Study on Site Survey of Emergency Generator for Resources (비상용 발전기 자원화 확대를 위한 현장실태조사에 관한 연구)

  • Cho, Sung-Koo;Han, Woon-Ki;Jung, Jin-Soo;Song, Young-Sang;Lim, Hyun-Sung
    • Proceedings of the KIEE Conference
    • /
    • 2015.07a
    • /
    • pp.1565-1566
    • /
    • 2015
  • As a result of increasing power demand and concern about power supply shortage in the world, various energy sources without depletion of fossil fuel are installed to electrical network. Above all, nuclear energy can be considered as the most economical energy source to generate electricity. But recently, due to problem of safety which has emerged as a key social issue, additional construction of nuclear power plants is difficult. In order to replace nuclear power, researches on the emergency generator have been actively conducting. This study conducted a survey of public institutions about specification of backup generator system and current states to secure available capacity.

  • PDF

Imaging Hypoxic Myocardium (심근 저산소증 영상)

  • Bae, Sang-Kyun
    • The Korean Journal of Nuclear Medicine
    • /
    • v.39 no.2
    • /
    • pp.141-145
    • /
    • 2005
  • Hypoxia (decreased tissue oxygen tension) is a component of many diseases such as tumors, cerebrovascular diseases and ischemic heart diseases. Although hypoxia can be secondary to a low inspired $pO_2$ or a variety of lung disorders, the most common cause is ischemia due to an oxygen demand greater than the local oxygen supply. In the heart tissue, hypoxia is often observed in persistent low-flow states, such as hibernating myocardium. Direct "hot spot" imaging of myocardial tissue hypoxia is potentially of great clinical importance because it may provide a means of identifying dysfunctional chronically ischemic but viable hibernating myocardium. A series of radiopharmaceuticals that incorporate nitroimidazole moieties have been synthesized to detect decreased local tissue pO2. In contrast to agents that localize in proportion to perfusion, these agents concentrate in hypoxic tissue. However, the ideal agents are not developed yet and the progress is very slow. Furthermore, the research focus is on tumor hypoxia nowadays. This review introduces the myocardial hypoxia imaging with summarizing the development of radiopharmaceuticals.

A Study on Effective Management Scheme for Soil and Groundwater Contaminated by Radioactive Materials Due to Nuclear Accidents (원전사고에 따른 토양.지하수 방사성오염의 효과적인 관리 연구)

  • Kim, Hee-Joo;Hyun, Yun-Jung;Kim, Young-Ju;Hwang, Sang-Il
    • Journal of Soil and Groundwater Environment
    • /
    • v.16 no.6
    • /
    • pp.113-121
    • /
    • 2011
  • In this study, we suggested the management scheme of analyzing the national and oversea related policy against soil and groundwater contamination by radioactive materials due to nuclear accidents. In Korea, we need to remedy swiftly the contaminated land due to intensive land development demand. So, we need to develop more effective management scheme to recover actively the land contaminated by radioactive materials. We require to improve monitoring network, to expand media-specific monitoring system, to prepare management system for remediation of contaminated land, and to develop flow work for soil and groundwater remediation.