• Title/Summary/Keyword: nuclear body

Search Result 991, Processing Time 0.032 seconds

Application of the Detection of External Contamination on Radiation Workers for Bed Type Whole Body Counting Using Monte Carlo Method (몬테카를로 방법을 적용한 bed type 전신계측기의 방사선작업종사자 외부오염 검출 응용)

  • Kim, Jeong-In;Lee, Byoung-Il
    • Journal of Radiation Protection and Research
    • /
    • v.38 no.4
    • /
    • pp.242-245
    • /
    • 2013
  • Monte Carlo method was applied to discriminate the external contamination on radiation workers in nuclear power plants for internal dose assessment generally used with a bed type scanning detector whole body counter. Korean voxel model with internal contamination was used to estimate the detection patterns of whole body scanning. Also, the BOMAB model with various external contamination was assumed to compare with detection of radionuclides inside the human body. From the comparison of detection efficiency between front and back side up, external contamination was easily distinguished.

Virtual calibration of whole-body counters to consider the size dependency of counting efficiency using Monte Carlo simulations

  • Park, MinSeok;Kim, Han Sung;Yoo, Jaeryong;Kim, Chan Hyeong;Jang, Won Il;Park, Sunhoo
    • Nuclear Engineering and Technology
    • /
    • v.53 no.12
    • /
    • pp.4122-4129
    • /
    • 2021
  • The counting efficiencies obtained using anthropomorphic physical phantoms are generally used in whole-body counting measurements to determine the level of internal contamination in the body. Geometrical discrepancies between phantoms and measured individuals affect the counting efficiency, and thus, considering individual physical characteristics is crucial to improve the accuracy of activity estimates. In the present study, the counting efficiencies of whole-body counting measurements were calculated considering individual physical characteristics by employing Monte Carlo simulation for calibration. The NaI(Tl)-based stand-up and HPGe-based bed type commercial whole-body counters were used for calculating the counting efficiencies. The counting efficiencies were obtained from 19 computational phantoms representing various shapes and sizes of the measured individuals. The discrepancies in the counting efficiencies obtained using the computational and physical phantoms range from 2% to 33%, and the results indicate that the counting efficiency depends on the size of the measured individual. Taking into account the body size, the equations for estimating the counting efficiencies were derived from the relationship between the counting efficiencies and the body-build index of the subject. These equations can aid in minimizing the size dependency of the counting efficiency and provide more accurate measurements of internal contamination in whole-body counting measurements.

Determination of counting efficiency considering the biodistribution of 131I activity in the whole-body counting measurement

  • MinSeok Park ;Jaeryong Yoo;Minho Kim ;Won Il Jang ;Sunhoo Park
    • Nuclear Engineering and Technology
    • /
    • v.55 no.1
    • /
    • pp.295-303
    • /
    • 2023
  • Whole-body counters are widely used to assess internal contamination after a nuclear accident. However, it is difficult to determine radioiodine activity due to limitations in conventional calibration phantoms. Inhaled or ingested radioiodine is heterogeneously distributed in the human body, necessitating time-dependent biodistribution for the assessment of the internal contamination caused by the radioiodine intake. This study aims at calculating counting efficiencies considering the biodistribution of 131I in whole-body counting measurement. Monte Carlo simulations with computational human phantoms were performed to calculate the whole-body counting efficiency for a realistic radioiodine distribution after its intake. The biodistributions of 131I for different age groups were computed based on biokinetic models and applied to age- and gender-specific computational phantoms to estimate counting efficiency. After calculating the whole-body counting efficiencies, the efficiency correction factors were derived as the ratio of the counting efficiencies obtained by considering a heterogeneous biodistribution of 131I over time to those obtained using the BOMAB phantom assuming a homogeneous distribution. Based on the correction factors, the internal contamination caused by 131I can be assessed using whole-body counters. These correction factors can minimize the influence of the biodistribution of 131I in whole-body counting measurement and improve the accuracy of internal dose assessment.

Measurement of Effective Half-life Using Dual Time I-131 Whole Body Scan in Patients with Differentiated Thyroid Cancer Treated by High Dose Therapy (고용량 방사성옥소 치료를 받은 갑상선분화암 환자에서 Dual Time I-131 Whole Body Scan을 이용한 유효반감기의 측정)

  • Yoon, Jae Sik;Lee, Jae Gon;Lee, Ki Hyun;Lim, Kwang Seok;Choi, Hak Ki;Lee, Sang Mi
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.18 no.1
    • /
    • pp.98-103
    • /
    • 2014
  • Purpose: The effective half life of I-131 is useful to calculate radiation dose, period of hospitalization, and exposure dose of surrounding people from patient. However, it is difficult to measure. This study estimates the effective half life in whole body and thyroid in using of value of residual radioactivity obtained from the early and delay images of Dual time I-131 whole body scan. Also, the correlations between the effective half life and serum creatinine, GFR, and administration dose were investigated in this study. Materials and Methods: The targets were 50 patients administration high dose of I-131 from February to August in 2013, having normal range of serum creatinine and over $30{\mu}IU/mL$ of TSH levels. After administration radioactive I-131, the early scan in the 3rd day and the delay scan in the 5-6th days were performed. To measure the residual radioactivity in the whole body and thyroid, ROI was set and then background radioactivity was corrected to estimate. The effective half life was estimated by calculating the ratio of measured values between the early and delay images. To compare the effective half lives of the whole body and thyroid, it was analyzed by Independent t-test, and each correlation of the effective half life, GFR, serum creatinine, and the dose of administration were analyzed by calculating the pearson's correlation coefficient. All of the analysis were determined to be statistically significant when P<0.05. Results: The effective half life of the whole body was $17.06{\pm}5.50$ hours and of the thyroid was $17.22{\pm}5.41$ hours. The two effective half life did not show significant difference (P=0.887). As the value of GFR was increased, the effective half life of whole body (r=-0.407, P=0.003) and of thyroid (r=-0.473, P=0.001) were significantly decreased; as the value of serum creatinine was increased, the effective half life of whole body (r=0.309, P=0.029) and of thyroid (r=0.371, P=0.008) were significantly increased. In the administration dose, effective half life did not have correlations. Conclusion: The effective half life of I-131 of patients treated for their thyroids were estimated only by using the images of Dual time I-131 whole body scan. Also, the correlations with the effective life, GFR, and serum creatinine were examined. This study might be utilized for a study on optimization for the period of hospitalization of patients treated by high dose of I-131 and on evaluation for internal absorbed dose of MIRD schema in application of the effective half life.

  • PDF

Assessment of a Deep Learning Algorithm for the Detection of Rib Fractures on Whole-Body Trauma Computed Tomography

  • Thomas Weikert;Luca Andre Noordtzij;Jens Bremerich;Bram Stieltjes;Victor Parmar;Joshy Cyriac;Gregor Sommer;Alexander Walter Sauter
    • Korean Journal of Radiology
    • /
    • v.21 no.7
    • /
    • pp.891-899
    • /
    • 2020
  • Objective: To assess the diagnostic performance of a deep learning-based algorithm for automated detection of acute and chronic rib fractures on whole-body trauma CT. Materials and Methods: We retrospectively identified all whole-body trauma CT scans referred from the emergency department of our hospital from January to December 2018 (n = 511). Scans were categorized as positive (n = 159) or negative (n = 352) for rib fractures according to the clinically approved written CT reports, which served as the index test. The bone kernel series (1.5-mm slice thickness) served as an input for a detection prototype algorithm trained to detect both acute and chronic rib fractures based on a deep convolutional neural network. It had previously been trained on an independent sample from eight other institutions (n = 11455). Results: All CTs except one were successfully processed (510/511). The algorithm achieved a sensitivity of 87.4% and specificity of 91.5% on a per-examination level [per CT scan: rib fracture(s): yes/no]. There were 0.16 false-positives per examination (= 81/510). On a per-finding level, there were 587 true-positive findings (sensitivity: 65.7%) and 307 false-negatives. Furthermore, 97 true rib fractures were detected that were not mentioned in the written CT reports. A major factor associated with correct detection was displacement. Conclusion: We found good performance of a deep learning-based prototype algorithm detecting rib fractures on trauma CT on a per-examination level at a low rate of false-positives per case. A potential area for clinical application is its use as a screening tool to avoid false-negative radiology reports.

The Production and Characterization of Monoclonal Antibodies to the Major Polyhedra Inclusion Body of the Occluded Form of Hyphantria cunea Nuclear Polyhedrosis Virus (Hyphantria cunea Nuclear Polyhedrosis Virus 봉입형의 핵다면체에 대한 단일클론 항체의 생산과 인식항원의 결정)

  • 장성호;홍순복;이형환;김종배;조명환
    • Microbiology and Biotechnology Letters
    • /
    • v.21 no.5
    • /
    • pp.406-413
    • /
    • 1993
  • This study was performed to produce monoclonal antibodies to the major polyhedral inclusion body (PIB) antigen of the occluded form of Hyphantria cunea nuclear polyhedrosis virus (HcNPV). PIB proteinS were purfied from the Spodoptera frugiperda cell infected with HcNPVs. Using the purified PIB protein, BALB/C mice were immunized 3 times with 2 weeks intervals. The spleen were removed and fused with Sp2/0-Ag14, mouse myeloma cells.

  • PDF

The Clinical Usefulness Measurement of the Whole Body Percent Fat Calculated by the Part Bone Mineral Density Measurement (부분골밀도 측정을 통해 산출되는 체지방률의 임상적 유용성에 대한 평가)

  • Kang, Young-Eun;Kim, Eun-Hye;Kim, Ho-Sung;Choi, Jong-Sook;Choi, Woo-Jun
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.15 no.1
    • /
    • pp.3-9
    • /
    • 2011
  • Purpose: Generally dual energy X-ray absorptiometry has been used for the purpose of evaluation of osteoporosis and treatment. Recently the interest of obesity came to be high and body percent fat test is increasing. Existing measure of body fat have to scan the whole body can be evaluated, but only lumbar spine and hip measurements was assumed to be whole body fat as well as improving the software. It tries to check whether the part measured value not being whole body measurement has the validity or not compared with the value calculated with the method that it is different, it forgives through a correlation with a (BIA) and (BMI). Materials and Methods: In 2010, the body percent fat was measured among the examinee coming to the Asan Medical Center public health care center from March till August against 90 females more than 40 years old through (DXA) and BIA. BMI utilized the value which wrote an hight and weight measured through the body measuring instrument in the examinee information and is automatically calculated. In addition, it classified as the low weight ($13-18.5kg/m^2$), normal ($18.5-25kg/m^2$), and corpulence ($25-30kg/m^2$) based on BMI and so that it could check whether there was the difference according to the weight or not BMI and BIA and correlation between DXA were analyzed in each group. The statistical program for the analysis used SPSS 12.0. Results: The comparison of DXA at 3 which it divides into the low weight and normal and corpulence groups and BIA did not show the difference noted statistically in all groups and the between group comparison was exposed to do not have a meaning. The body percent fat measured by the correlation analysis result DXA at the state that it doesn't divide into the group showed the high correlation (r=0.908, p0.01) noted statistically compared with BMI and showed the high correlation noted statistically in a comparison with BIA (r=0.927, p0.01). Conclusion: It confirmed that the whole body percent fat presumed from the part bone density measurement showed the excel correlation compared with BIA and BMI and information is high. There is still no clear standard about the presumed whole body percent fat and it is difficult to evaluate the fat evaluation by the bone mineral density measurement. However, it is determined that the information offering which is more objective through the comparative study with the body percent fat which is very efficient and in that it can obtain till the information about a fat as well as diagnosis of the osteoporosis through the bone density checkup is measured by the afterward telegraph bone density checkup and is clinically useful is possible.

  • PDF

False-positive I-131 Uptake in Meningioma (갑상선암 환자에서 관찰된 뇌수막종의 위양성 옥소 섭취)

  • Jeong, Shin-Young;Seo, Ji-Hyoung;Bae, Jin-Ho;Hwang, Jeong-Hyun;Ahn, Byeong-Cheol;Lee, Jae-Tae;Lee, Kyu-Bo
    • The Korean Journal of Nuclear Medicine
    • /
    • v.38 no.3
    • /
    • pp.272-273
    • /
    • 2004
  • We experienced a case with meningioma showing false positive I-131 uptake. A 55-years old female patient underwent high dose (150 mCi) radioactive iodine therapy to ablate remnant tissue after total thyroidectomy for papillary thyroid cancer. in addition to intense tracer uptake in thyroid bed, there was mild but focal abnormal uptake in left frontal lobe of the brain on post-therapy I-131 whole body scan. Subsequent brain MR imaging showed single mass lesion in left frontal lobe and the mass was resected under the impression of brain metastasis of thyroid carcinoma. Pathologic report confirmed meningioma from the surgical specimen.