• Title/Summary/Keyword: novel species

Search Result 738, Processing Time 0.032 seconds

Development of a Plastid DNA-Based Maker for the Identification of Five Medicago Plants in South Korea

  • Kim, Il Ryong;Yoon, A-Mi;Lim, Hye Song;Lee, Sunghyeon;Lee, Jung Ro;Choi, Wonkyun
    • Proceedings of the National Institute of Ecology of the Republic of Korea
    • /
    • v.3 no.4
    • /
    • pp.212-220
    • /
    • 2022
  • DNA markers have been studied and used intensively to identify plant species based on molecular approaches. The genus Medicago belongs to the family Fabaceae and contains 87 species distributed from the Mediterranean to central Asia. Five species of Medicago are known to be distributed in South Korea; however, their morphological characteristics alone cannot distinguish the species. In this study, we analyzed the phylogenetic relationships using collected five species of Medicago from South Korea and 44 taxa nucleotide information from NCBI. The constructed phylogenetic tree using gibberellin 3-oxidase 1 and tRNALys (UUU) to maturase K gene sequences showed the monophyly of the genus Medicago, with five species each forming a single clade. These results suggest that there are five species of Medicago distributed in South Korea. In addition, we designed polymerase chain reaction primers for species-specific detection of Medicago by comparing the plastid sequences. The accuracy of the designed primer pairs was confirmed for each Medicago species. The findings of this study provide efficient and novel species identification methods for Medicago, which will assist in the identification of wild plants for the management of alien species and living modified organisms.

Sufflavibacter maritimus gen. nov., sp. nov., Novel Flavobacteriaceae Bacteria Isolated from Marine Environments

  • Kwon, Kae-Kyoung;Yang, Seung-Jo;Lee, Hee-Soon;Cho, Jang-Cheon;Kim, Sang-Jin
    • Journal of Microbiology and Biotechnology
    • /
    • v.17 no.8
    • /
    • pp.1379-1384
    • /
    • 2007
  • Four Gram-negative, chemoheterotrophic, non-motile, yellow-colored strains were isolated from the East Sea or from deep-sea sediments of Nankai Trough by standard dilution plating. Characterization by polyphasic approaches indicated that the four strains are members of the same species. Phylogenetic analyses based on 16S rRNA gene sequences revealed that the strains formed a coherent and novel genus-level lineage within the family Flavobacteriaceae. The dominant cellular fatty acids were i-C15:0, 3-OH i-C17:0, and 2-OH i-C15:0 and/or C16:1 ${\omega}7c$. Predominance of 2-OH i-C15:0 and/or C16:1 ${\omega}7c$ clearly differentiated the strains from closely related members. The DNA G+C contents ranged 35.1-36.2 mol%. It is proposed, from the polyphasic evidence, that the strains should be placed into a novel genus and species named Sufflavibacter maritimus gen. nov., sp. nov., with strain $IMCC1001^T(=KCCM\;42359^T=NBRC\;102039^T)$ as the type strain.

Diversity and Bioactive Potential of Culturable Fungal Endophytes of Medicinal Shrub Berberis aristata DC.: A First Report

  • Sharma, Supriya;Gupta, Suruchi;Dhar, Manoj K.;Kaul, Sanjana
    • Mycobiology
    • /
    • v.46 no.4
    • /
    • pp.370-381
    • /
    • 2018
  • Bioactive natural compounds, isolated from fungal endophytes, play a promising role in the search for novel drugs. They are an inspiring source for researchers due to their enormous structural diversity and complexity. During the present study fungal endophytes were isolated from a well-known medicinal shrub, Berberis aristata DC. and were explored for their antagonistic and antioxidant potential. B. aristata, an important medicinal shrub with remarkable pharmacological properties, is native to Northern Himalayan region. A total of 131 endophytic fungal isolates belonging to eighteen species and nine genera were obtained from three hundred and thirty surface sterilized segments of different tissues of B. aristata. The isolated fungi were classified on the basis of morphological and molecular analysis. Diversity and species richness was found to be higher in leaf tissues as compared to root and stem. Antibacterial activity demonstrated that the crude ethyl acetate extract of 80% isolates exhibited significant results against one or more bacterial pathogens. Ethyl acetate extract of Alternaria macrospora was found to have potential antibacterial activity. Significant antioxidant activity was also found in crude ethyl acetate extracts of Alternaria alternata and Aspergillus flavus. Similarly, antagonistic activity of the fungal endophytes revealed that all antagonists possessed inhibition potential against more than one fungal pathogen. This study is an important step towards tapping endophytic fungal diversity for bioactive metabolites which could be a step forward towards development of novel therapeutic agents.

Synthetic Biology Tools for Novel Secondary Metabolite Discovery in Streptomyces

  • Lee, Namil;Hwang, Soonkyu;Lee, Yongjae;Cho, Suhyung;Palsson, Bernhard;Cho, Byung-Kwan
    • Journal of Microbiology and Biotechnology
    • /
    • v.29 no.5
    • /
    • pp.667-686
    • /
    • 2019
  • Streptomyces are attractive microbial cell factories that have industrial capability to produce a wide array of bioactive secondary metabolites. However, the genetic potential of the Streptomyces species has not been fully utilized because most of their secondary metabolite biosynthetic gene clusters (SM-BGCs) are silent under laboratory culture conditions. In an effort to activate SM-BGCs encoded in Streptomyces genomes, synthetic biology has emerged as a robust strategy to understand, design, and engineer the biosynthetic capability of Streptomyces secondary metabolites. In this regard, diverse synthetic biology tools have been developed for Streptomyces species with technical advances in DNA synthesis, sequencing, and editing. Here, we review recent progress in the development of synthetic biology tools for the production of novel secondary metabolites in Streptomyces, including genomic elements and genome engineering tools for Streptomyces, the heterologous gene expression strategy of designed biosynthetic gene clusters in the Streptomyces chassis strain, and future directions to expand diversity of novel secondary metabolites.

A Novel Alternaria Species Isolated from Peucedanum japonicum in Korea

  • Deng, Jian Xin;Cho, Hye Sun;Paul, Narayan Chandra;Lee, Hyang Burm;Yu, Seung Hun
    • Mycobiology
    • /
    • v.42 no.1
    • /
    • pp.12-16
    • /
    • 2014
  • We isolated and examined a new Alternaria sp., which causes leaf spots on Peucedanum japonicum in Korea, by using molecular and morphological methods. Phylogenetic analysis based on a combined internal transcribed spacer region analysis and two protein-coding genes (gpd and Alt a1) demonstrated that the causal fungus was most closely related to A. cinerariae and A. sonchi, and relevant to A. brassicae. However, conidial morphology indicated that it is a novel species within the genus Alternaria, and therefore we have assigned the fungus a new name in this study.

Isolation and physiological characterization of a novel virus infecting Stephanopyxis palmeriana (Bacillariophyta)

  • Kim, JinJoo;Yoon, Seok-Hyun;Choi, Tae-Jin
    • ALGAE
    • /
    • v.30 no.2
    • /
    • pp.81-87
    • /
    • 2015
  • Recent studies have shown the importance of viruses as potential sources of plankton mortality, which affect primary production and biogeochemical functions of their hosts. Here, we report basic characteristics of a novel virus (Stephanopyxis palmeriana virus: SpalV) that causes lysis of a culture of the diatom S. palmeriana, which was isolated in Jaran Bay, Korea, in August 2008. SpalV is a round-shaped viral particle ~25-30 nm in diameter that propagates in its host's cytoplasm. In addition, it shows species-specific infectivity among the tested diatom species. The burst size and latent period are estimated to be roughly 92 infectious units $cell^{-1}$ and <80 h, respectively.

Ceratocystis quercicola sp. nov. from Quercus variabilis in Korea

  • Cho, Sung-Eun;Lee, Dong-Hyeon;Wingfield, Michael J.;Marincowitz, Seonju
    • Mycobiology
    • /
    • v.48 no.4
    • /
    • pp.245-251
    • /
    • 2020
  • During a survey of putative fungal pathogens infecting oak trees in the Gangwon Province of the Republic of Korea, a fungus resembling a Ceratocystis sp. was repeatedly isolated from natural wounds on Quercus variabilis. Morphological comparisons and DNA sequence comparisons based on partial β-tubulin and TEF-1α gene regions showed that the fungus resided in a distinct lineage. This novel Ceratocystis species is described here as C. quercicola sp. nov. This is the first novel species of Ceratocystis to be reported from Korea. A pathogenicity test showed that it can cause lesions on inoculated trees but that it had a very low level of aggressiveness. The discovery of this fungus suggests that additional taxa residing in Ceratocystis are likely to be discovered in Korea in the future.

Pharmacokinetic Scaling of SJ-8029. a Novel Anticancer Agent Possessing Microtubule and Topoisomerase Inhibiting Activities. by Species-Invariant Time Methods

  • Kim, Dong-Hwan;Shin, Beom-Soo;Cho, Chang-Youn;Park, Si-Koung;Chung, Sung-Gan;Cho, Eui-Hwan;Lee, Sun-Hwan;Joo, Jeong-Ho;Kwon, Ho-Suk
    • Proceedings of the PSK Conference
    • /
    • 2002.10a
    • /
    • pp.422.1-422.1
    • /
    • 2002
  • This study examined the pharmacokinetic disposition of SJ-8029. a novel anticancer agent possessing microtubule and topoisomerase inhibiting activities. in mice. rats. rabbits and dogs after i.v. administration. The serum concentration-time curves of SJ-8029 were best described by tri-exponential equations in all these animal species. The mean CI. $V_{ss}$ and $t_{1/2}$ were 0.3 L/h. 0.1 Land 63.2 min in mice. 1.5 L/h. 1.6 Land 247.7 min in rats. 13.8 L/h. 39.6 Land 245.9 min in rabbits. and 29.2 L/h. 44.6 Land 117.4 min in dogs. respectively. (omitted)

  • PDF

Isolation of Novel Hepcidin Isoforms from the Rockbream Oplegnathus fasciatus (Perciformes)

  • Lee, Sang-Yoon;Nam, Yoon-Kwon
    • Fisheries and Aquatic Sciences
    • /
    • v.14 no.1
    • /
    • pp.31-42
    • /
    • 2011
  • Three novel hepcidin isoforms were isolated and characterized from the perciform fish species Oplegnathus fasciatus. These hepcidin isoforms (designated rbhepc5, rbhepc6 and rbhepc7) were found to share a conserved, tripartite gene structure and a considerable sequence homology one another. A comparison of their mature peptide sequences with those of other perciform hepcidin orthologs indicated that these three hepcidin isoforms as well as four other isoforms previously identified in this species, appear to belong to the HAMP2 group of hepcidin genes. Analysis of the 5'-upstream sequences showed that the proximal non-coding regions of rbhepc5~7 do not possess canonical TATA signals; instead, they harbor several binding motifs for transcription factors involved in immune modulation. Reverse transcriptase-PCR analysis demonstrated that the rbhepc5~7 are expressed predominantly in the liver, and that the transcription of rbhepc5~7 is rapidly induced in the liver, but not in other tissues, by experimental challenge with any of three different bacterial species. However, transcription of rbhepc6 appeared to be negligible under both basal and stimulated conditions, as judged by the redundancy count of randomly chosen reverse transcriptase-PCR clones.

A molecular-assisted alpha taxonomic study of the genus Centroceras (Ceramiaceae, Rhodophyta) in Bermuda reveals two novel species

  • Schneider, Craig W.;Cianciola, Elisabeth N.;Popolizio, Thea R.;Spagnuolo, Dylan S.;Lane, Christopher E.
    • ALGAE
    • /
    • v.30 no.1
    • /
    • pp.15-33
    • /
    • 2015
  • When the generitype Centroceras clavulatum, a presumed cosmopolitan warm temperate to tropical red alga, was discovered to have a biogeographic distribution limited to the Pacific Ocean using molecular and morphological evidence, the taxonomy in the genus Centroceras was thrown into chaos worldwide. An analysis of what species was, or were, previously identified as C. clavulatum in Bermuda is the focus of the present molecular (COI-5P, rbcL) and morphological study. Two novel species are proposed, C. arcii sp. nov. and C. illaqueans sp. nov., and the distributions of three taxa recently segregated in the 'C. clavulatum complex' of the western Atlantic, C. gasparrinii, C. hyalacanthum, and C. micracanthum, have been expanded to include Bermuda. C. arcii is shown to be morphologically cryptic with C. micracanthum, and remains best distinguished by its COI-5P barcode sequence.