• Title/Summary/Keyword: novel member

Search Result 203, Processing Time 0.025 seconds

SAMD13 as a Novel Prognostic Biomarker and its Correlation with Infiltrating Immune Cells in Hepatocellular Carcinoma

  • Hye-Ran Kim;Choong Won Seo;Jae-Ho Lee;Sang Jun Han;Jongwan Kim
    • Biomedical Science Letters
    • /
    • v.28 no.4
    • /
    • pp.260-275
    • /
    • 2022
  • Sterile alpha motif (SAM) domains bind to various proteins, lipids, and RNAs. However, these domains have not yet been analyzed as prognostic biomarkers. In this study, SAM domain containing 13 (SAMD13), a member of the SAM domain, was evaluated to identify a novel prognostic biomarker in various human cancers, including hepatocellular carcinoma (HCC). Moreover, we identified a correlation between SAMD13 expression and immune cell infiltration in HCC. We performed bioinformatics analysis using online databases, such as Tumor Immune Estimation Resource, UALCAN, Kaplan-Meier plotter, LinkedOmics, and Gene Expression Profiling Interactive Analysis2. SAMD13 expression in HCC samples was significantly higher than that in normal liver tissue; additionally, SAMD13 was higher in primary tumors, various stages of cancer and grades of tumor, and status of nodal metastasis. Higher SAMD13 expression was also associated with poorer prognosis. SAMD13 expression positively correlated with CD8+ T cells, CD4+ T cells, B cells, neutrophils, macrophages, and dendritic cells. In the analysis of SAMD13 co-expression networks, positively related genes of SAMD13 were associated with a high hazard ratio in different types of cancer, including HCC. In biological function of SAMD13, SAMD13 mainly include spliceosome, ribosome biogenesis in eukaryote, ribosome, etc. These results suggest that SAMD13 may serve as a novel prognostic biomarker for HCC diagnosis and provide novel insights into tumor immunology in HCC.

Mechanistic insights into differential requirement of receptor dimerization for oncogenic activation of mutant EGFR and its clinical perspective

  • Cho, Jeonghee
    • BMB Reports
    • /
    • v.53 no.3
    • /
    • pp.133-141
    • /
    • 2020
  • The epidermal growth factor receptor (EGFR), a member of the ErbB family (EGFR, ErbB2, ErbB3 and ErbB4), plays a crucial role in regulating various cellular responses such as proliferation, differentiation, and survival. As a result, aberrant activation of EGFR, mostly mediated through different classes of genomic alterations occurring within EGFR, is closely associated with the pathogenesis of numerous human cancers including lung adenocarcinoma, glioblastoma, and colorectal cancer. Thus, specific suppression of oncogenic activity of mutant EGFR with its targeted drugs has been routinely used in the clinic as a very effective anti-cancer strategy in treating a subset of tumors driven by such oncogenic EGFR mutants. However, the clinical efficacy of EGFR-targeted therapy does not last long due to several resistance mechanisms that emerge in the patients following the drug treatment. Thus, there is an urgent need for the development of novel therapeutic tactics specifically targeting mutant EGFR with the focus on the unique biological features of various mutant EGFR. Regarding this point, our review specifically emphasizes the recent findings about distinct requirements of receptor dimerization and autophosphorylation, which are critical steps for enzymatic activation of EGFR and signaling cascades, respectively, among wildtype and mutant EGFR and further discuss their clinical significance. In addition, the molecular mechanisms regulating EGFR dimerization and enzymatic activity by a key negative feedback inhibitor Mig6 as well as the clinical use for developing potential novel drugs targeting it are described in this review.

Molecular Characterization of a Novel Putative Partitivirus Infecting Cytospora sacchari, a Plant Pathogenic Fungus

  • Peyambari, Mahtab;Habibi, Mina Koohi;Fotouhifar, Khalil-Berdi;Dizadji, Akbar;Roossinck, Marilyn J.
    • The Plant Pathology Journal
    • /
    • v.30 no.2
    • /
    • pp.151-158
    • /
    • 2014
  • Three double-stranded RNAs (dsRNAs), approximately 1.85, 1.65 and 1.27 kb in size, were detected in an isolate of Cytospora sacchari from Iran. Partial nucleotide sequence revealed a 1,284 bp segment containing one ORF that potentially encodes a 405 aa protein. This protein contains conserved motifs related to RNA dependent RNA polymerases (RdRp) that showed similarity to RdRps of partitiviruses. The results indicate that these dsRNAs represent a novel Partitivirus that we tentatively designate Cytospora sacchari partitivirus (CsPV). Treatment of the fungal strain by cyclohexamide and also hyphal tip culture had no effect on removing the putative virus. Phylogenetic analysis of putative RdRp of CsPV and other partitiviruses places CsPV as a member of the genus Partitivirus in the family Partitiviridae, and clustering with Aspergillus ochraceous virus 1.

Regulator of Calcineurin (RCAN): Beyond Down Syndrome Critical Region

  • Lee, Sun-Kyung;Ahnn, Joohong
    • Molecules and Cells
    • /
    • v.43 no.8
    • /
    • pp.671-685
    • /
    • 2020
  • The regulator of calcineurin (RCAN) was first reported as a novel gene called DSCR1, encoded in a region termed the Down syndrome critical region (DSCR) of human chromosome 21. Genome sequence comparisons across species using bioinformatics revealed three members of the RCAN gene family, RCAN1, RCAN2, and RCAN3, present in most jawed vertebrates, with one member observed in most invertebrates and fungi. RCAN is most highly expressed in brain and striated muscles, but expression has been reported in many other tissues, as well, including the heart and kidneys. Expression levels of RCAN homologs are responsive to external stressors such as reactive oxygen species, Ca2+, amyloid β, and hormonal changes and upregulated in pathological conditions, including Alzheimer's disease, cardiac hypertrophy, diabetes, and degenerative neuropathy. RCAN binding to calcineurin, a Ca2+/calmodulin-dependent phosphatase, inhibits calcineurin activity, thereby regulating different physiological events via dephosphorylation of important substrates. Novel functions of RCANs have recently emerged, indicating involvement in mitochondria homeostasis, RNA binding, circadian rhythms, obesity, and thermogenesis, some of which are calcineurin-independent. These developments suggest that besides significant contributions to DS pathologies and calcineurin regulation, RCAN is an important participant across physiological systems, suggesting it as a favorable therapeutic target.

White Teeth and the Making of the Multiethnic Subject

  • Kwon, Younghee
    • Journal of English Language & Literature
    • /
    • v.58 no.6
    • /
    • pp.1215-1233
    • /
    • 2012
  • This essay is an attempt to critique the notion of hybridity that has so far facilitated a liberal multiculturalist reading of White Teeth. For an alternative framework, it posits the multiethnic subject-making to examine in what ways the novel questions the premises of liberal multiculturalism. In this vein, this study suggests that Smith throws some significant light on the underside of holding multiple racial/ethnic identities while not bypassing its utopian possibilities. In case of the first-generation male characters, their crossracial/homosocial friendship becomes a platform for a mode of egalitarian belonging across the racial divide. It further implies a symbolic union between working-class white and nonwhite immigrant. The younger generation, in contrast, undergoes problems of racial, ethnic, cultural affiliations in far more complicated ways than the older one. Above all, White Teeth demonstrates the subtle workings of liberal multiculturalism, within which the younger characters are constructed to be a multiethnic subject in varied modes. It delineates the formation mainly by exploring the persisting legacies of Britain's imperial history that partake in their subject-making. The novel, in doing so, obliquely suggests that the younger generation is to confront the past that is a seminal part of their present life rather than have the freedom to throw it away to be a carefree member of a multicultural society.

Survivin, a Promising Gene for Targeted Cancer Treatment

  • Shamsabadi, Fatemeh T;Eidgahi, Mohammad Reza Akbari;Mehrbod, Parvaneh;Daneshvar, Nasibeh;Allaudin, Zeenathul Nazariah;Yamchi, Ahad;Shahbazi, Majid
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.17 no.8
    • /
    • pp.3711-3719
    • /
    • 2016
  • Drawbacks of conventional cancer treatments, with lack of specificity and cytotoxicity using current approaches, underlies the necessity for development of a novel approach, gene-directed cancer therapy. This has provided novel technological opportunities in vitro and in vivo. This review focuses on a member of an apoptosis inhibitor family, survivin, as a valuable target. Not only the gene but also its promoter are applicable in this context. This article is based on a literature survey, with especial attention to RNA interference as well as tumor-specific promoter action. The search engine and databases utilized were Science direct, PubMed, MEDLINE and Google. In addition to cell-cycle modulation, apoptosis inhibition, interaction in cell-signaling pathways, cancer-selective expression, survivin also may be considered as specific target through its promoter as a novel treatment for cancer. Our purpose in writing this article was to create awareness in researchers, emphasizing relation of survivin gene expression to potential cancer treatment. The principal result and major conclusion of this manuscript are that survivin structure, biological functions and applications of RNA interference systems as well as tumor-specific promoter activity are of major interest for cancer gene therapy.

Biological Functions and Identification of Novel Biomarker Expressed on the Surface of Breast Cancer-Derived Cancer Stem Cells via Proteomic Analysis

  • Koh, Eun-Young;You, Ji-Eun;Jung, Se-Hwa;Kim, Pyung-Hwan
    • Molecules and Cells
    • /
    • v.43 no.4
    • /
    • pp.384-396
    • /
    • 2020
  • Breast cancer is one of the most common life-threatening malignancies and the top cause of cancer deaths in women. Although many conventional therapies exist for its treatment, breast cancer still has many handicaps to overcome. Cancer stem cells (CSCs) are a well-known cause of tumor recurrences due to the ability of CSCs for self-renewal and differentiation into cell subpopulations, similar to stem cells. To fully treat breast cancer, a strategy for the treatment of both cancer cells and CSCs is required. However, current strategies for the eradication of CSCs are non-specific and have low efficacy. Therefore, surface biomarkers to selectively treat CSCs need to be developed. Here, 34 out of 641 surface biomarkers on CSCs were identified by proteomic analysis between the human breast adenocarcinoma cell line MCF-7 and MCF-7-derived CSCs. Among them, carcinoembryonic antigen-related cell adhesion molecules 6 (CEACAM6 or CD66c), a member of the CEA family, was selected as a novel biomarker on the CSC surface. This biomarker was then experimentally validated and evaluated for use as a CSC-specific marker. Its biological effects were assessed by treating breast cancer stem cells (BCSCs) with short hairpin (sh)-RNA under oxidative cellular conditions. This study is the first to evaluate the biological function of CD66c as a novel biomarker on the surface of CSCs. This marker is available as a moiety for use in the development of targeted therapeutic agents against CSCs.

Empirical Validation for Verbal- EBS Effect to Cognitive Stimulation (구두 형식의 전자적 브레인 스토밍이 인지적 자극에 미치는 영향에 대한 실증적 연구)

  • Kim, Jeong-Wook;Jeong, Jong-Ho
    • Journal of Korean Society for Quality Management
    • /
    • v.36 no.2
    • /
    • pp.67-84
    • /
    • 2008
  • Given the industry's unprecedented attention and dedication of resources to voice recognition, this paper introduces and explores a novel idea generation technique whereby ideas are captured directly through verbalization rather than forcing group members to type ideas. A group simulator was used to measure the idea generation performance of individuals who input ideas verbally or via typing in the context of nominal and interacting groups. The results clearly indicate that verbal input represents a more desirable mechanism in a computer-mediated idea generation environment. Liberating group members from the keyboard produces remarkable performance gains. Verbalizing ideas helps individuals focus on analytical thinking and leverage group member ideas, ultimately facilitating the creation of ideas pools that are vastly superior in terms of quantity and quality. These effects were found across nominal and interacting groups. The implications of these results for future research and the design of technologies are discussed.

A reinforced concrete frame element with shear effect

  • Valipour, Hamid R.;Foster, Stephen J.
    • Structural Engineering and Mechanics
    • /
    • v.36 no.1
    • /
    • pp.57-78
    • /
    • 2010
  • A novel flexibility-based 1D element that captures the material nonlinearity and second order P-$\Delta$ effects within a reinforced concrete frame member is developed. The formulation is developed for 2D planar frames in the modified fiber element framework but can readily be extended to 3D cases. The nonlinear behavior of concrete including cracking and crushing is taken into account through a modified hypo-elastic model. A parabolic and a constant shear stress distribution are used at section level to couple the normal and tangential tractions at material level. The lack of objectivity due to softening of concrete is addressed and objectivity of the response at the material level is attained by using a technique derived from the crack band approach. Finally the efficiency and accuracy of the formulation is compared with experimental results and is demonstrated by some numerical examples.

Cloning of a novel ion channel candidate by in silico gene mining

  • Shim, Won-Sik;Kim, Man-Su;Yang, Young-Duk;Park, Seung-Pyo;Kim, Byung-Moon;Oh, Uh-Taek
    • Proceedings of the PSK Conference
    • /
    • 2003.04a
    • /
    • pp.192.2-193
    • /
    • 2003
  • Capsaicin, a pungent ingredient in chili pepper, is known to excite sensory neurons that mediate pain sensation. This effect of capsaicin is determined by unique receptors and the capsaicin receptor (transient receptor potential subfamily V, member 1 (TRPV1)) was cloned recently. TRPV1 contains six transmembrane domains and three ankyrin repeats at N-terminal. This characteristic architecture is common in other ion channel in TRPV families. (omitted)

  • PDF