• Title/Summary/Keyword: novel genes

Search Result 941, Processing Time 0.029 seconds

Screening of Novel Inducible Resistance Gene to Macrolide-Lincosamide-Streptogramin B (MLS) Antibiotics from Clinical Isolates of Staphylococcus spp (임상분리 Staphylococcus속 균주로부터 마크로라이드-린코사마이드-스트렙토그라민 B(MLS)계 항생물질에 대한 새로운 유도내성 유전자의 검색)

  • 오정자;권애란;이미정;김숙경;최성숙;최응칠;김병각
    • Biomolecules & Therapeutics
    • /
    • v.1 no.2
    • /
    • pp.177-182
    • /
    • 1993
  • From 84 clinical isolates of Staphylococcus species, ten strains showing inducible resistance to MLS antibiotics were selected by disk agar diffusion method. Colony hybridization was executed using two MLS inducible resistance genes, ermA and ermC, previously identified from S. aureus as probes. S. hemolyticus 401 and S. epidermidis 542 whose genes were not homologous to those probes were finally selected. It was determined that the resistance genes of S. hemolyticus 401 and S. epidermidis 542 were not homologous to ermA, ermC and ermAM by Southern hybridization. S. epidermidis 542 had a plasmid DNA. To know if the plasmid may have genes related to inducible resistance, it was attempted to transform B. subtilis BR151 and S. aureus RN4220 with the plasmid prepared from S. epidermidis 542. It was shown that the gene related to inducible resistance to MLS antibiotics did not exist in this plasmid. These results indicate that two clinical isolates of S. hemolyticus 401 and S. epidermidis 542 had novel genes which were not homologous to MLS resistance genes identified previously. It was assumed that these genes may exist in chromosomal DNA.

  • PDF

Heterologous Expression of Novel Cytochrome P450 Hydroxylase Genes from Sebekia benihana

  • Park Nam-Sil;Park Hyun-Joo;Han Kyu-Boem;Kim Eung-Soo
    • Journal of Microbiology and Biotechnology
    • /
    • v.16 no.2
    • /
    • pp.295-298
    • /
    • 2006
  • Actinomycetes are ubiquitous Gram-positive soil bacteria and a group of the most important industrial microorganisms for the biosynthesis of many valuable secondary metabolites as well as the source of various bioconversion enzymes. Cytochrome P450 hydroxylase (CYP), a hemebinding protein, is known to be involved in the modification of various natural compounds, including polyketides, fatty acids, steroids, and some aromatic compounds. Previously, six different novel CYP genes were isolated from a rare actinomycetes called Sebekia benihana, and they were completely sequenced, revealing significant amino acid similarities to previously known CYP genes involved in Streptomyces secondary metabolism. In the present study, these six CYP genes were functionally expressed in Streptomyces lividans, using an $ermE^{*}$ promoter-containing Streptomyces expression vector. Among six CYP genes, two S. benihana CYP genes (CYP503 and CYP504) showed strong hydroxylation activities toward 7-ethoxycoumarin. Furthermore, the recombinant S. lividans containing both the S. benihana CYP506-ferredoxin genes as well as the S. coelicolor feredoxin reductase gene also demonstrated cyclosporin A hydroxylation activity, suggesting potential application of actinomycetes CYPs for the biocatalysts of natural product bioconversion.

Identification of Novel Regulators of Apoptosis Using a High-Throughput Cell-based Screen

  • Park, Kyung Mi;Kang, Eunju;Jeon, Yeo-Jin;Kim, Nayoung;Kim, Nam-Soon;Yoo, Hyang-Sook;Yeom, Young Il;Kim, Soo Jung
    • Molecules and Cells
    • /
    • v.23 no.2
    • /
    • pp.170-174
    • /
    • 2007
  • High-throughput subcellular imaging is a powerful tool for investigating the function of genes. In order to identify novel regulators of apoptosis we transiently transfected HeLa cells with 938 hypothetical genes of unknown function, and captured their nuclear images with an automated fluorescence microscope. We selected genes that induced greater than 3-fold increase in the percentage of apoptotic nuclei compared with vector-transfected cells. The full-length genes C10orf61, MGC 26717, and FLJ13855 were identified as candidate proapoptotic genes, and their apoptotic effects were confirmed by DNA fragmentation ELISAs and Western blotting for caspase-7 and PARP. We conclude that a subcellular image-based apoptotic screen is useful for identifying genes with proapoptotic activity.

Identification and Molecular Characterization of Insecticidal cryl-type Genes from Bacillus thuringiensis 2385-1

  • Li, Ming-Shun;Park, Jae-Young;Roh, Jong-Yul;Shim, Hee-Jin;Boo, Kyung-Saeng;Je, Yeon-Ho
    • Proceedings of the Korean Society of Sericultural Science Conference
    • /
    • 2003.10a
    • /
    • pp.114-115
    • /
    • 2003
  • A Bacillus thuringiensis isolate, Bt 2385-1, which showed toxicity to lepidopteran, was isolated from Korean soil sample and characterized. PCR-RFLP showed that this isolate contains two novel cryl-type crystal protein genes. In this study, we designed cryl-type specific primer set (ATG1-F and N400-R) to clone the toxic domain of the all cryl-type genes. The two novel rlyl-type toxin genes in addition to crylJal gene were cloned and sequenced. (omitted)

  • PDF

A Novel Translocation Involving RUNX1 and HOXA Gene Clusters in a Case of Acute Myeloid Leukemia with t(7;21)(p15;q22)

  • Moon, Yeonsook;Horsman, Douglas E.;Humphries, R. Keith;Park, Gyeongsin
    • IMMUNE NETWORK
    • /
    • v.13 no.5
    • /
    • pp.222-226
    • /
    • 2013
  • Translocations involving chromosome 21q22 are frequently observed in hematologic malignancies including acute myeloid leukemia (AML), most of which have been known to be involved in malignant transformation through transcriptional dysregulation of Runt-related transcription factor 1 (RUNX1) target genes. Nineteen RUNX1 translocational partner genes, at least, have been identified, but not Homeobox A (HOXA) genes so far. We report a novel translocation of RUNX1 into the HOXA gene cluster in a 57-year-old female AML patient who had been diagnosed with myelofibrosis 39 months ahead. G-banding showed 46,XX,t(7;21)(p15;q22). The involvement of RUNX1 and HOXA genes was confirmed by fluorescence in situ hybridization.

Identification of Novel Clubroot Resistance Loci in Brassic rapa

  • Pang, Wenxing;Chen, Jingjing;Yu, Sha;Shen, Xiangqun;Zhang, Chunyu;Piao, Zhongyun
    • 한국균학회소식:학술대회논문집
    • /
    • 2015.05a
    • /
    • pp.42-42
    • /
    • 2015
  • Plasmodiophora brassicae, the causal agent of clubroot disease, does the most serious damage to the Brassica crops. The limited control approaches make that the identification of clubroot resistance (CR) is more important for developing CR cultivars of the Brassica crops. So far, 8 CR loci were mapped. However, the variation of P. brassicae leads to the rapid erosion of its resistance. To identify novel CR genes, we employed three mapping population, derived from crosses between Chinese cabbage and turnip inbred lines ($59-1{\times}ECD04$ and $BJN3-1{\times}Siloga$) or between Chinese cabbage inbred lines ($BJN3-1{\times}85-I-II$), to perform QTL analysis. Totally, 8 CR loci were indentified and showed race-specific resistance. Physical mapping of these 8 loci suggested that 4 were located previously mapped position, indicating they might be the same allele or different alleles of the same genes. Other 4 loci were found to be novel. Further, CR near isogenic line carrying each CR locus was developed based on the marker assisted selection. Verification of these CR loci was underway. Identification of these novel CR genes would facilitate to breed broad-spectrum and durable CR cultivars of B. rapa by pyramiding strategies.

  • PDF

Novel Vancomycin Resistance System in Streptomyces coelicolor

  • Hong, Hee-Jeon
    • Proceedings of the Microbiological Society of Korea Conference
    • /
    • 2005.05a
    • /
    • pp.143-147
    • /
    • 2005
  • The non-pathogenic, non-glycopeptide-producing actinomycete Streptomyces coelicolor carries a cluster of seven genes (vanSRJKHAX) that confers inducible, high-level resistance to vancomycin. The van genes are organised into four transcription units, vanRS, vanJ, vanK and vanHAX, and these transcripts are induced by vancomycin in a vanR-dependent manner. vanHAX are orthologuous to genes found in vancomycin resistant enterococci that encode enzymes predicted to reprogramme peptidoglycan biosynthesis such that cell wall precursors terminate in D-Ala-D-Lac, rather than D-Ala-D-Ala. vanR and vanS encode a two-component signal transduction system that mediates transcriptional induction of the seven van genes. vanJ and vanK are novel genes that have no counterpart in previously characterised vancomycin-resistance clusters from pathogens. VanK is essential for vancomycin resistance in S. coelicolor and it is required for adding Gly branch to stem peptides terminating D-Ala-D-Lac. Because VanK can recognise D-Lac-containing precursors but the constitutively expressed femX enzyme, encoded elsewhere on the chromosome, cannot recognize D-Lac-containing precursors as a substrate, vancomycin-induced expression of VanHAX in a vanK mutant is lethal. Further, femX null mutants are viable in the presence of glycopeptide antibiotics but die in their absence. Bioassay using vanJp-neo fusion reporter system also showed that all identified inducers for van genes expression were glycopeptide antibiotics, but teicoplanin, a membrane-anchored glycopeptide, failed to act as an inducer.

  • PDF

Investigation of candidated genes for molecular characterization of DongGyeong dog populations (Gyeongju)

  • Park, Chang-Eun;Lee, Eun-Woo;Sung, Ki-Chang;Choi, Seog-Gyu
    • Korean Journal of Veterinary Service
    • /
    • v.33 no.4
    • /
    • pp.361-366
    • /
    • 2010
  • This study was carried out to investigate the characters of short-tailed dogs (DongGyeong dogs) with anatomical insights, molecular genetics in Gyeongju. The present study was conducted to further characterize of short-tailed dog population in Gyeongju. The short-tailed dog was analyzed in the distribution of 55 individual. The anatomical insights were by x-ray. For discovery of specific genes expressions were measured by Hot-start PCR analysis. Anatomy survey, the number of vertebral typical consists of more than 20. 88.9% of short-tailed dog populations consists of 3-8 vertebrates. The 54 individuals of the 47 observe the vestigial tailed of the sacrum. No detected sacrococcygeal vertebrae degradation individuals were malformation defects. The 3 genes were DEGs (differentially expressed genes) in Dong-Gyeong dogs. We succeeded in finding 3 novel DongGyeong dogs specific genes by using Hot-start PCR analysis, this study suggests that these novel genes may play role (s) in DongGyeong dogs.

Isolation of an Rx homolog from C. annuum and the evolution of Rx genes in the Solanaceae family

  • Shi, Jinxia;Yeom, Seon-In;Kang, Won-Hee;Park, Min-Kyu;Choi, Do-Il;Kwon, Jin-Kyung;Han, Jung-Heon;Lee, Heung-Ryul;Kim, Byung-Dong;Kang, Byoung-Cheorl
    • Plant Biotechnology Reports
    • /
    • v.5 no.4
    • /
    • pp.331-344
    • /
    • 2011
  • The well-conserved NBS domain of resistance (R) genes cloned from many plants allows the use of a PCR-based approach to isolate resistance gene analogs (RGAs). In this study, we isolated an RGA (CapRGC) from Capsicum annuum "CM334" using a PCR-based approach. This sequence encodes a protein with very high similarity to Rx genes, the Potato Virus X (PVX) R genes from potato. An evolutionary analysis of the CapRGC gene and its homologs retrieved by an extensive search of a Solanaceae database provided evidence that Rx-like genes (eight ESTs or genes that show very high similarity to Rx) appear to have diverged from R1 [an NBS-LRR R gene against late blight (Phytophthora infestans) from potato]-like genes. Structural comparison of the NBS domains of all the homologs in Solanaceae revealed that one novel motif, 14, is specific to the Rx-like genes, and also indicated that several other novel motifs are characteristic of the R1-like genes. Our results suggest that Rx-like genes are ancient but conserved. Furthermore, the novel conserved motifs can provide a basis for biochemical structural. function analysis and be used for degenerate primer design for the isolation of Rx-like sequences in other plant species. Comparative mapping study revealed that the position of CapRGC is syntenic to the locations of Rx and its homolog genes in the potato and tomato, but cosegregation analysis showed that CapRGC may not be the R gene against PVX in pepper. Our results confirm previous observations that the specificity of R genes is not conserved, while the structure and function of R genes are conserved. It appears that CapRGC may function as a resistance gene to another pathogen, such as the nematode to which the structure of CapRGC is most similar.

An evolving integrative physiology: skeleton and energy metabolism

  • Lee, Na-Kyung
    • BMB Reports
    • /
    • v.43 no.9
    • /
    • pp.579-583
    • /
    • 2010
  • The adipocyte-derived hormone leptin regulates appetite and bone mass. Recent research demonstrates that reciprocally, osteoblasts have a role in controlling energy metabolism. Several genes expressed in osteoblasts are involved in this process, and one of them is the Esp gene. The remaining genes regulate Esp gene expression. OST-PTP, the protein name of Esp, regulates the carboxylation of osteocalcin secreted from osteoblasts, thus affecting insulin sensitivity and insulin secretion. This review provides evidence for a novel interpretation of the connection between bone and energy metabolism and expands our understanding of the novel physiology of bone beyond its classical functions.