Browse > Article
http://dx.doi.org/10.4110/in.2013.13.5.222

A Novel Translocation Involving RUNX1 and HOXA Gene Clusters in a Case of Acute Myeloid Leukemia with t(7;21)(p15;q22)  

Moon, Yeonsook (Department of Laboratory Medicine, BC Cancer Agency)
Horsman, Douglas E. (Department of Laboratory Medicine, BC Cancer Agency)
Humphries, R. Keith (Terry Fox Laboratory, British Columbia Cancer Agency)
Park, Gyeongsin (Terry Fox Laboratory, British Columbia Cancer Agency)
Publication Information
IMMUNE NETWORK / v.13, no.5, 2013 , pp. 222-226 More about this Journal
Abstract
Translocations involving chromosome 21q22 are frequently observed in hematologic malignancies including acute myeloid leukemia (AML), most of which have been known to be involved in malignant transformation through transcriptional dysregulation of Runt-related transcription factor 1 (RUNX1) target genes. Nineteen RUNX1 translocational partner genes, at least, have been identified, but not Homeobox A (HOXA) genes so far. We report a novel translocation of RUNX1 into the HOXA gene cluster in a 57-year-old female AML patient who had been diagnosed with myelofibrosis 39 months ahead. G-banding showed 46,XX,t(7;21)(p15;q22). The involvement of RUNX1 and HOXA genes was confirmed by fluorescence in situ hybridization.
Keywords
AML; Translocation; t(7; 21); RUNX1; HOXA;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Okuda, T., J. van Deursen, S. W. Hiebert, G. Grosveld, and J. R. Downing. 1996. AML1, the target of multiple chromosomal translocations in human leukemia, is essential for normal fetal liver hematopoiesis. Cell 84: 321-330.   DOI
2 de Bruijn, M. F. and N. A. Speck. 2004. Core-binding factors in hematopoiesis and immune function. Oncogene 23: 4238- 4248.   DOI
3 Miyoshi, H., K. Shimizu, T. Kozu, N. Maseki, Y. Kaneko, and M. Ohki. 1991. t(8;21) breakpoints on chromosome 21 in acute myeloid leukemia are clustered within a limited region of a single gene, AML1. Proc. Natl. Acad. Sci. USA 88: 10431-10434.   DOI
4 Huret, J. L. 1990. Complex translocations, simple variant translocations and Ph-negative cases in chronic myelogenous leukaemia. Hum. Genet. 85: 565-568.
5 Krumlauf, R. 1994. Hox genes in vertebrate development. Cell 78: 191-201.   DOI
6 Pineault, N., C. D. Helgason, H. J. Lawrence, and R. K. Humphries. 2002. Differential expression of Hox, Meis1, and Pbx1 genes in primitive cells throughout murine hematopoietic ontogeny. Exp. Hematol. 30: 49-57.   DOI
7 Kroon, E., U. Thorsteinsdottir, N. Mayotte, T. Nakamura, and G. Sauvageau. 2001. NUP98-HOXA9 expression in hemopoietic stem cells induces chronic and acute myeloid leukemias in mice. EMBO J. 20: 350-361.   DOI
8 Argiropoulos, B. and R. K. Humphries. 2007. Hox genes in hematopoiesis and leukemogenesis. Oncogene 26: 6766- 6776.   DOI
9 Chou, W. C., C. Y. Chen, H. A. Hou, L. I. Lin, J. L. Tang, M. Yao, W. Tsay, B. S. Ko, S. J. Wu, S. Y. Huang, S. C. Hsu, Y. C. Chen, Y. N. Huang, M. H. Tseng, C. F. Huang, and H. F. Tien. 2009. Acute myeloid leukemia bearing t(7;11)(p15;p15) is a distinct cytogenetic entity with poor outcome and a distinct mutation profile: comparative analysis of 493 adult patients. Leukemia 23: 1303-1310.   DOI
10 Makretsov, N., M. He, M. Hayes, S. Chia, D. E. Horsman, P. H. Sorensen, and D. G. Huntsman. 2004. A fluorescence in situ hybridization study of ETV6-NTRK3 fusion gene in secretory breast carcinoma. Genes Chromosomes Cancer 40: 152-157.   DOI
11 Koo, S. H., G. C. Kwon, H. J. Chun, and J. W. Park. 1998. Cytogenetic and fluorescence in situ hybridization analyses of hematologic malignancies in Korea. Cancer Genet. Cytogenet. 101: 1-6.   DOI
12 Wang, Q., T. Stacy, J. D. Miller, A. F. Lewis, T. L. Gu, X. Huang, J. H. Bushweller, J. C. Bories, F. W. Alt, G. Ryan, P. P. Liu, A. Wynshaw-Boris, M. Binder, M. Marin-Padilla, A. H. Sharpe, and N. A. Speck. 1996. The CBFbeta subunit is essential for CBFalpha2 (AML1) function in vivo. Cell 87: 697-708.   DOI
13 Jeandidier, E., N. Dastugue, F. Mugneret, M. Lafage- Pochitaloff, M. J. Mozziconacci, C. Herens, L. Michaux, C. Verellen-Dumoulin, P. Talmant, P. Cornillet-Lefebvre, I. Luquet, C. Charrin, C. Barin, M. A. Collonge-Rame, C. Perot, J. Van den Akker, M. J. Gregoire, P. Jonveaux, L. Baranger, V. Eclache-Saudreau, M. P. Pages, C. Cabrol, C. Terre, R. Berger, and H. Groupe Francais de Cytogenetique. 2006. Abnormalities of the long arm of chromosome 21 in 107 patients with hematopoietic disorders: a collaborative retrospective study of the Groupe Francais de Cytogenetique Hematologique. Cancer Genet. Cytogenet. 166: 1-11.   DOI
14 Pineault, N., C. Abramovich, H. Ohta, and R. K. Humphries. 2004. Differential and common leukemogenic potentials of multiple NUP98-Hox fusion proteins alone or with Meis1. Mol. Cell. Biol. 24: 1907-1917.   DOI
15 Yassin, E. R., N. J. Sarma, A. M. Abdul-Nabi, J. Dombrowski, Y. Han, A. Takeda, and N. R. Yaseen. 2009. Dissection of the transformation of primary human hematopoietic cells by the oncogene NUP98-HOXA9. PLoS One 4: e6719.   DOI
16 Meyers, S., N. Lenny, and S. W. Hiebert. 1995. The t(8;21) fusion protein interferes with AML-1B-dependent transcriptional activation. Mol. Cell. Biol. 15: 1974-1982.   DOI
17 Thorsteinsdottir, U., G. Sauvageau, M. R. Hough, W. Dragowska, P. M. Lansdorp, H. J. Lawrence, C. Largman, and R. K. Humphries. 1997. Overexpression of HOXA10 in murine hematopoietic cells perturbs both myeloid and lymphoid differentiation and leads to acute myeloid leukemia. Mol. Cell. Biol. 17: 495-505.   DOI
18 Mesa, R. A., C. Y. Li, R. P. Ketterling, G. S. Schroeder, R. A. Knudson, and A. Tefferi. 2005. Leukemic transformation in myelofibrosis with myeloid metaplasia: a single-institution experience with 91 cases. Blood 105: 973-977.