• 제목/요약/키워드: notch gene

검색결과 41건 처리시간 0.03초

Isolation and identification of goose skeletal muscle satellite cells and preliminary study on the function of C1q and tumor necrosis factor-related protein 3 gene

  • Wang, Han;He, Ke;Zeng, Xuehua;Zhou, Xiaolong;Yan, Feifei;Yang, Songbai;Zhao, Ayong
    • Animal Bioscience
    • /
    • 제34권6호
    • /
    • pp.1078-1087
    • /
    • 2021
  • Objective: Skeletal muscle satellite cells (SMSCs) are significant for the growth, regeneration, and maintenance of skeletal muscle after birth. However, currently, few studies have been performed on the isolation, culture and inducing differentiation of goose muscle satellite cells. Previous studies have shown that C1q and tumor necrosis factor-related protein 3 (CTRP3) participated in the process of muscle growth and development, but its role in the goose skeletal muscle development is not yet clear. This study aimed to isolate, culture, and identify the goose SMSCs in vitro. Additionally, to explore the function of CTRP3 in goose SMSCs. Methods: Goose SMSCs were isolated using 0.25% trypsin from leg muscle (LM) of 15 to 20 day fertilized goose eggs. Cell differentiation was induced by transferring the cells to differentiation medium with 2% horse serum and 1% penicillin streptomycin. Immunofluorescence staining of Desmin and Pax7 was used to identify goose SMSCs. Quantitative realtime polymerase chain reaction and western blot were applied to explore developmental expression profile of CTRP3 in LM and the regulation of CTRP3 on myosin heavy chains (MyHC), myogenin (MyoG) expression and Notch signaling pathway related genes expression. Results: The goose SMSCs were successfully isolated and cultured. The expression of Pax7 and Desmin were observed in the isolated cells. The expression of CTRP3 decreased significantly during leg muscle development. Overexpression of CTRP3 could enhance the expression of two myogenic differentiation marker genes, MyHC and MyoG. But knockdown of CTRP3 suppressed their expression. Furthermore, CTRP3 could repress the mRNA level of Notch signaling pathway-related genes, notch receptor 1, notch receptor 2 and hairy/enhancer-of-split related with YRPW motif 1, which previously showed a negative regulation in myoblast differentiation. Conclusion: These findings provide a useful cell model for the future research on goose muscle development and suggest that CTRP3 may play an essential role in skeletal muscle growth of goose.

Microarray Analysis of the Hypoxia-induced Gene Expression Profile in Malignant C6 Glioma Cells

  • Huang, Xiao-Dong;Wang, Ze-Fen;Dai, Li-Ming;Li, Zhi-Qiang
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제13권9호
    • /
    • pp.4793-4799
    • /
    • 2012
  • Hypoxia is commonly featured during glioma growth and plays an important role in the processes underlying tumor progression to increasing malignancy. Here we compared the gene expression profiles of rat C6 malignant glioma cells under normoxic and hypoxic conditions by cDNA microarray analysis. Compared to normoxic culture conditions, 180 genes were up-regulated and 67 genes were down-regulated under hypoxia mimicked by $CoCl_2$ treatment. These differentially expressed genes were involved in mutiple biological functions including development and differentiation, immune and stress response, metabolic process, and cellular physiological response. It was found that hypoxia significantly regulated genes involved in regulation of glycolysis and cell differentiation, as well as intracellular signalling pathways related to Notch and focal adhesion, which are closely associated with tumor malignant growth. These results should facilitate investigation of the role of hypoxia in the glioma development and exploration of therapeutic targets for inhibition of glioma growth.

Expressional Patterns of Adipocyte-Associated Molecules in the Rat Epididymal Fat during Postnatal Development Period

  • Lee, Ki-Ho;Kim, Nan Hee
    • 한국발생생물학회지:발생과생식
    • /
    • 제22권4호
    • /
    • pp.351-360
    • /
    • 2018
  • The adipogenesis is a maturation process of pre-adipocyte cell into mature lipid-filled adipocyte cell. The adipogenesis begins at the late prenatal stage and continues until the early postnatal age. Because the adipogenesis and formation of adipose tissue persist during postnatal period and are precisely regulated by the action of numerous gene products, the present research was attempted to determine the expressional patterns of adipose tissue-associated genes in the rat epididymal fat pad at different postnatal ages, from 7 days to 2 years of ages, using a quantitative real-time PCR analysis. The basal expression levels of CCAAT/enhancer binding protein gamma, sterol regulatory element binding transcription factor 1, fatty acid binding protein 4, adiponectin, leptin, and resistin at the early postnatal ages were significantly lower than those at the elderly ages, even though a fluctuation of expressional levels was observed at some ages. The lowest expressional level of delta like non-canonical Notch ligand 1 was detected at 44 days and 5 months of ages. The expression of peroxisome proliferator-activated receptor gamma ($PPAR{\gamma}$) was the highest at 44 days of age, followed by a diminished expression of $PPAR{\gamma}$ at the elderly ages. These results indicate the existence of a complex regulatory mechanism(s) for expression of adipose tissueassociated genes in the rat epididymal fat during postnatal period.

Rap Signaling in Normal Lymphocyte Development and Leukemia Genesis

  • Minato, Nagahiro
    • IMMUNE NETWORK
    • /
    • 제9권2호
    • /
    • pp.35-40
    • /
    • 2009
  • Although Rap GTPases of the Ras family remained enigmatic for years, extensive studies in this decade have revealed diverse functions of Rap signaling in the control of cell proliferation, differentiation, survival, adhesion, and movement. With the use of gene-engineered mice, we have uncovered essential roles of endogenous Rap signaling in normal lymphocyte development of both T- and B-lineage cells. Deregulation of Rap signaling, on the other hand, results in the development of characteristic leukemia in manners highly dependent on the contexts of cell lineages. These results highlight crucial roles of Rap signaling in the physiology and pathology of lymphocyte development.

한국에서 분리한 Tobacco rattle virus(TRV-K)의 특성 (Characterization of Tobacco rattle virus(TRV-K) isolated in Korea)

  • 신혜영;구봉진;강상구;장무웅;류기현
    • 식물병연구
    • /
    • 제8권4호
    • /
    • pp.207-214
    • /
    • 2002
  • 대구시와 경상북도 지역에서 Tobacco rattle virus(TRV) 감염에 의한 증상으로 보이는 글라디올러스(Gladiolus hybridus), 크로커스(Crocus spp.), 수선화(Narcissus spp.)를 채집하였다. 톱니무늬(notch), 줄무늬(stripe), 변형 (malformation)등의 증상의 잎 조직을 시료로 하여 direct negative staining method(DN) 및 immunosorbent electron microscopy(ISEM)법에 의해 투과전자현미경으로 바이러스 입자를 관찰한 결과, 각각의 시료에서 긴 입자는 170~200 X 22nm, 짧은 입자는 40~114$\times$22nm 크기의 막대모양 입자가 다수 확인되었다. 글라디올러스에서 분리한 tobacco rattle virus(TRV-K)를 담배(Nicotiana tabacum)에 즙액 접종, 증식시킨 후, 정제하여 항혈청을 제작하였다. TRV-K 의 coat protein(CP)유전자를 특이적인 올리고뉴클레오타 이드 프라이머를 이용하여 역전사-중합효소연쇄반응(RT-PCR)으로 증폭시킨 후에 염기서열분석법으로 확인하였다. 그 결과 TRV-ORY의 CP와 99.5%의 상동성을 나타냈다.

Potential biomarkers and signaling pathways associated with the pathogenesis of primary salivary gland carcinoma: a bioinformatics study

  • Bayat, Zeynab;Ahmadi-Motamayel, Fatemeh;Salimi Parsa, Mohadeseh;Taherkhani, Amir
    • Genomics & Informatics
    • /
    • 제19권4호
    • /
    • pp.42.1-42.17
    • /
    • 2021
  • Salivary gland carcinoma (SGC) is rare cancer, constituting 6% of neoplasms in the head and neck area. The most responsible genes and pathways involved in the pathology of this disorder have not been fully understood. We aimed to identify differentially expressed genes (DEGs), the most critical hub genes, transcription factors, signaling pathways, and biological processes (BPs) associated with the pathogenesis of primary SGC. The mRNA dataset GSE153283 in the Gene Expression Omnibus database was re-analyzed for determining DEGs in cancer tissue of patients with primary SGC compared to the adjacent normal tissue (adjusted p-value < 0.001; |Log2 fold change| > 1). A protein interaction map (PIM) was built, and the main modules within the network were identified and focused on the different pathways and BP analyses. The hub genes of PIM were discovered, and their associated gene regulatory network was built to determine the master regulators involved in the pathogenesis of primary SGC. A total of 137 genes were found to be differentially expressed in primary SGC. The most significant pathways and BPs that were deregulated in the primary disease condition were associated with the cell cycle and fibroblast proliferation procedures. TP53, EGF, FN1, NOTCH1, EZH2, COL1A1, SPP1, CDKN2A, WNT5A, PDGFRB, CCNB1, and H2AFX were demonstrated to be the most critical genes linked with the primary SGC. SPIB, FOXM1, and POLR2A significantly regulate all the hub genes. This study illustrated several hub genes and their master regulators that might be appropriate targets for the therapeutic aims of primary SGC.

Transcriptional Properties of the BMP, $TGF-\beta$, RTK, Wnt, Hh, Notch, and JAK/STAT Signaling Molecules in Mouse Embryonic Stem Cells

  • Rho Jeung-Yon;Bae Gab-Yong;Chae Jung-Il;Yu Kweon;Koo Deog-Bon;Lee Kyung-Kwang;Han Yong-Mahn
    • Reproductive and Developmental Biology
    • /
    • 제30권2호
    • /
    • pp.143-156
    • /
    • 2006
  • Major characteristics of embryonic stem cells (ESCs) are sustaining of sternness and pluripotency by self-renewal. In this report, transcriptional profiles of the molecules in the developmentally important signaling pathways including Wnt, BMP4, $TGF-\beta$, RTK, Hh, Notch, and JAK/STAT signaling pathways were investigated to understand the self-renewal of mouse ESCs (mESCs), J1 line, and compared with the NIH3T3 cell line and mouse embryonic fibroblast (MEF) cells as controls. In the Wnt signaling pathway, the expression of Wnt3 was seen widely in mESCs, suggesting that the ligand may be an important regulator for self-renewal in mESCs. In the Hh signaling pathway, the expression of Gli and N-myc were observed extensively in mESCs, whereas the expression levels of in a Shh was low, suggesting that intracellular molecules may be essential for the self-renewal of mESCs. IGF-I, IGF-II, IGF-IR and IGF-IIR of RTK signaling showed a lower expression in mESCs, these molecules related to embryo development may be restrained in mESCs. The expression levels of the Delta and HESS in Notch signaling were enriched in mESCs. The expression of the molecules related to BMP and JAK-STAT signaling pathways were similar or at a slightly lower level in mESCs compared to those in MEF and NIH3T3 cells. It is suggested that the observed differences in gene expression profiles among the signaling pathways may contribute to the self-renewal and differentiation of mESCs in a signaling-specific manner.

Optimized Internal Control and Gene Expression Analysis in Epstein-Barr Virus-Transformed Lymphoblastoid Cell Lines

  • Nam, Hye-Young;Kim, Hye-Ryun;Shim, Sung-Mi;Lee, Jae-Eun;Kim, Jun-Woo;Park, Hye-Kyung;Han, Bok-Ghee;Jeon, Jae-Pil
    • Genomics & Informatics
    • /
    • 제9권3호
    • /
    • pp.127-133
    • /
    • 2011
  • The Epstein-Barr virus-transformed lymphoblastoid cell line (LCL) is one of the major genomic resources for human genetics and immunological studies. Use of LCLs is currently extended to pharmacogenetic studies to investigate variations in human gene expression as well as drug responses between individuals. We evaluated four common internal controls for gene expression analysis of selected hematopoietic transcriptional regulatory genes between B cells and LCLs. In this study, the expression pattern analyses showed that TBP (TATA box-binding protein) is a suitable internal control for normalization, whereas GAPDH (glyceraldehyde-3-phosphate dehydrogenase) is not a good internal control for gene expression analyses of hematopoiesis-related genes between B cells and LCLs at different subculture passages. Using the TBP normalizer, we found significant gene expression changes in selected hematopoietic transcriptional regulatory genes (downregulation of RUNX1, RUNX3, CBFB, TLE1, and NOTCH2 ; upregulation of MSC and PLAGL2) between B cells and LCLs at different passage numbers. These results suggest that these hematopoietic transcriptional regulatory genes are potential cellular targets of EBV infection, contributing to EBV-mediated B-cell transformation and LCL immortalization.

CUG2 유전자에 의하여 감소된 FBXW7 E3 ligase 발현이 유사-종양줄기세포 표현형을 유도 (The Decreased Expression of Fbxw7 E3 Ligase Mediated by Cancer Upregulated Gene 2 Confers Cancer Stem Cell-like Phenotypes)

  • 야웃 낫파판;김남욱;붓루앙 파차라폰;조일래;카오윈 시리차트;고상석;강호영;정영화
    • 생명과학회지
    • /
    • 제32권4호
    • /
    • pp.271-278
    • /
    • 2022
  • 신규 종양 유전자 Cancer Upregulated Gene (CUG) 2가 어떻게 유사-종양줄기세포 표현형을 유도하는지 잘 알려져 있지 않다. Cyclin E, c-Myc, Notch, 그리고 Yap1와 같은 종양단백질를 분해하여 그 발현을 조절하는 FBXW7 E3 ligase의 발현이 대장암, 자궁경부암, 그리고 위암 등 여러 암조직에서 낮아져 있음이 보고되고 있다. 그래서 우리는 이 FBXW7 단백질이 CUG2에 의한 종양형성에 관여할 수 있다는 가설을 세웠다. 이 연구에서 우리는 각 대조구 세포주보다 CUG2가 과발현된 A549 폐암 세포주와 BEAS-2B 기관지 세포주에서 FBXW7 단백질 발현이 낮게 나왔다. 여기서 MG132를 처리하게 되면 감소된 FBXW7과 FBXW7 기질로 알려진 Yap1 단백질 발현이 증가되는 결과를 관찰하였다. 종양줄기세포 현상에서 FBXW7의 역할을 규명하기 위하여, FBXW7 siRNA를 처리하였다. 대조구 세포주에서 감소된 FBXW7의 조건은 세포 이동 침습, 그리고 구형 형성이 증가되는 종양줄기세포 현상이 촉진되는 것을 관찰하였고, CUG2가 과발현된 두 세포주에서 FBXW7 발현 벡타 도입으로 FBXW7 발현 증가는 종양줄기세포 현상이 억제됨을 알 수 있었다. 또한 FBXW7의 감소는 EGFR-Akt-ERK1/2와 β-catenin-Yap1-NEK2 신호 경로를 활성화시키고, 반대로 FBXW7 발현 증가는 이 두 경로의 활성이 억제됨을 알 수 있었다. 이들 결과를 종합해 보면, CUG2 과발현은 FBXW7의 발현 감소로 이어지고, 이는 EGFR-Akt-ERK1/2와 β-catenin-Yap1-NEK2 신호경로를 활성화시켜 유사-종양줄기세포 현상을 촉진하는 것으로 생각된다.

DNA binding partners of YAP/TAZ

  • Kim, Min-Kyu;Jang, Ju-Won;Bae, Suk-Chul
    • BMB Reports
    • /
    • 제51권3호
    • /
    • pp.126-133
    • /
    • 2018
  • Hippo signaling plays critical roles in regulation of tissue homeostasis, organ size, and tumorigenesis by inhibiting YES-associated protein (YAP) and PDZ-binding protein TAZ through MST1/2 and LATS1/2 pathway. It is also engaged in cross-talk with various other signaling pathways, including WNT, BMPs, Notch, GPCRs, and Hedgehog to further modulate activities of YAP/TAZ. Because YAP and TAZ are transcriptional coactivators that lack DNA-binding activity, both proteins must interact with DNA-binding transcription factors to regulate target gene's expression. To activate target genes involved in cell proliferation, TEAD family members are major DNA-binding partners of YAP/TAZ. Accordingly, YAP/TAZ were originally classified as oncogenes. However, YAP might also play tumor-suppressing role. For example, YAP can bind to DNA-binding tumor suppressors including RUNXs and p73. Thus, YAP might act either as an oncogene or tumor suppressor depending on its binding partners. Here, we summarize roles of YAP depending on its DNA-binding partners and discuss context-dependent functions of YAP/TAZ.