• Title/Summary/Keyword: normalized displacement

Search Result 87, Processing Time 0.024 seconds

A laboratory and numerical study on the effect of geogrid-box method on bearing capacity of rock-soil slopes

  • Moradi, Gholam;Abdolmaleki, Arvin;Soltani, Parham;Ahmadvand, Masoud
    • Geomechanics and Engineering
    • /
    • v.14 no.4
    • /
    • pp.345-354
    • /
    • 2018
  • Currently, layered geogrid method (LGM) is the commonly practiced technique for reinforcement of slopes. In this paper the geogrid-box method (GBM) is introduced as a new approach for reinforcement of rock-soil slopes. To achieve the objectives of this study, a laboratory setup was designed and the slopes without reinforcements and reinforced with LGM and GBM were tested under the loading of a circular footing. The effect of vertical spacing between geogrid layers and box thickness on normalized bearing capacity and failure mechanism of slopes was investigated. A series of 3D finite element analysis were also performed using ABAQUS software to supplement the results of the model tests. The results indicated that the load-settlement behavior and the ultimate bearing capacity of footing can be significantly improved by the inclusion of reinforcing geogrid in the soil. It was found that for the slopes reinforced with GBM, the displacement contours are widely distributed in the rock-soil mass underneath the footing in greater width and depth than that in the reinforced slope with LGM, which in turn results in higher bearing capacity. It was also established that by reducing the thickness of geogrid-boxes, the distribution and depth of displacement contours increases and a longer failure surface is developed, which suggests the enhanced bearing capacity of the slope. Based on the studied designs, the ultimate bearing capacity of the GBM-reinforced slope was found to be 11.16% higher than that of the slope reinforced with LGM. The results also indicated that, reinforcement of rock-soil slopes using GBM causes an improvement in the ultimate bearing capacity as high as 24.8 times more than that of the unreinforced slope.

Comparison of postural control between subgroups of persons with nonspecific chronic low back and healthy controls during the modified Star Excursion Balance Test

  • Shallan, Amjad;Lohman, Everett;Alshammari, Faris;Dudley, Robert;Gharisia, Omar;Al-Marzouki, Rana;Hsu, Helen;Daher, Noha
    • Physical Therapy Rehabilitation Science
    • /
    • v.8 no.3
    • /
    • pp.125-133
    • /
    • 2019
  • Objective: To compare the postural control between non-specific chronic low back pain (NSCLBP) subgroups and healthy people during dynamic balance performance using a modified Star Excursion Balance Test (mSEBT). Design: Cross-sectional study. Methods: Eighteen NSCLBP subjects (9 active extension pattern [AEP], 9 flexion pattern [FP]), and 10 healthy controls were enrolled in this study. All subjects performed mSEBT on their dominant leg on a force plate. Normalized reach distance and balance parameters, including the center of pressure (COP) displacement and velocity, were recorded. Results: There were significant differences in mean reach distances in both posterolateral and posteromedial (PM) reach directions between AEP and healthy subjects (p<0.001) and between FP and healthy subjects (p<0.001). However, there were no significant differences among the three groups in the anterior reach direction. Also, the results showed no significant differences in mean COP variables (velocity and displacement) between pooled NSCLBP and healthy subjects. However, the subjects were reclassified into AEP, FP and healthy groups and the results showed a significant difference in mean COP velocity in the PM direction between AEP and FP subjects (p=0.048), and between AEP and healthy subjects (p=0.024). Conclusions: The findings in this study highlight the heterogeneity of the individuals with NSCLBP and the importance of identifying the homogenous subgroups. Individuals with AEP and FP experience deficits in dynamic postural control compared to healthy controls. In addition, the findings of this study support the concept of the Multidimensional Classification System.

Evaluation of Horizontal Load and Moment Capacities of Bucket-Type Offshore Wind Turbine Foundation (버켓형식 해상풍력기초의 수평 하중과 모멘트 저항력 평가)

  • Bagheri, Pouyan;Yoon, Jong Chan;Son, Su Won;Kim, Jin Man
    • Journal of the Korean GEO-environmental Society
    • /
    • v.22 no.1
    • /
    • pp.5-12
    • /
    • 2021
  • Owing to economically efficient and easy installation, bucket foundation is a promising solution for offshore wind turbines. This paper aims at finding the behavior of suction caissons and soil surrounding the foundation by using three-dimensional finite element analysis. Under various loading conditions, a wide range of foundation geometries installed in dense and medium dense sandy soil was considered to evaluate ultimate horizontal load and overturning moment capacity. The results show that the rotation and displacement of the bucket due to monotonic loading are largely dependent on the foundation geometry, soil density and load eccentricity. Normalized diagrams and equations for the ultimate horizontal load and overturning moment capacities are presented that are useful tool for the preliminary design of such foundation type.

Development of seismic collapse capacity spectra for structures with deteriorating properties

  • Shu, Zhan;Li, Shuang;Gao, Mengmeng;Yuan, Zhenwei
    • Earthquakes and Structures
    • /
    • v.12 no.3
    • /
    • pp.297-307
    • /
    • 2017
  • Evaluation on the sidesway seismic collapse capacity of the widely used low- and medium-height structures is meaningful. These structures with such type of collapse are recognized that behave as inelastic deteriorating single-degree-of-freedom (SDOF) systems. To incorporate the deteriorating effects, the hysteretic loop of the nonlinear SDOF structural model is represented by a tri-linear force-displacement relationship. The concept of collapse capacity spectra are adopted, where the incremental dynamic analysis is performed to check the collapse point and a normalized ground motion intensity measure corresponding to the collapse point is used to define the collapse capacity. With a large amount of earthquake ground motions, a systematic parameter study, i.e., the influences of various ground motion parameters (site condition, magnitude, distance to rupture, and near-fault effect) as well as various structural parameters (damping, ductility, degrading stiffness, pinching behavior, accumulated damage, unloading stiffness, and P-delta effect) on the structural collapse capacity has been performed. The analytical formulas for the collapse capacity spectra considering above influences have been presented so as to quickly predict the structural collapse capacities.

Effect of Volume Fraction and Length of Fiber on the Mechanical Properties of Fiber Reinforced Concrete (섬유보강 콘크리트의 역학적 특성에 대한 섬유 체적비와 길이의 영향)

  • Yang, Keun-Hyeok;O, Seung-Jin
    • Journal of the Korea Institute of Building Construction
    • /
    • v.8 no.1
    • /
    • pp.43-48
    • /
    • 2008
  • Fifteen concrete specimens were mixed and tested to explore the significance and limitation of appling the polyvinyl alcohol (PVA) fiber and steel fiber with end hook to concrete. Main parameters investigated were volume fraction and length of the fibers. The measured mechanical properties of fiber reinforced concrete are analyzed according to the equivalent fiber amount index explaining the adding amount and length of fibers. Test results showed that compressive strength of fiber reinforced concrete was higher than that of concrete with no fiber by $10{\sim}20%$. The normalized splitting tensile strength and flexural strength of PVA fiber reinforced concrete were similar to those of concrete with no fiber, whereas those of steel fiber reinforced concrete increased with the increase of the equivalent fiber amount index. In particular, much higher ductile behavior was observed in steel fiber reinforced concrete than in PVA reinforced concrete, indicating that the slope of descending branch of load-displacement relationship of steel fiber reinforced concrete decreased with the increase of the volume fraction and length of the fiber.

The Behavior of Overall Strain Range in Undrained Triaxial Compression Tests for a Weathered Soil (풍화토의 비배수 삼축압축시험시 전체 변형률 영역의 거동에 관한 연구)

  • 안영대;오세붕;고동희;김동수
    • Journal of the Korean Geotechnical Society
    • /
    • v.18 no.1
    • /
    • pp.29-39
    • /
    • 2002
  • In order to evaluate the behavior of overall range from small strain to failure, the triaxial compression tests with LVDTs were performed for local displacement measurements. According to the result it was possible to evaluate the total range behavior from 0.001% to 10% and both secant moduli of undisturbed and disturbed weathered soils had a similar result in the small slain level. The normalized shear moduli$(G/G_{max})$ in the undrained triaxial compression tests were similar to those of resonant column tests but the maximum shear moduli$(G/G_{max})$ were strongly affected by the ratio of saturation. As a result of parametric study a constitutive model with anisotropic hardening could predict the behavior of total strain range.

Analysis of Flexural Vibration of Rhombic Plates with Combinations Clamped and Free Boundary Conditions Including the Effect of Corner Stress Singularities (모서리 응력특이도의 영향을 포함한 고정 또는 자유 경계조건의 조합을 고려한 마름모꼴 평판의 휨 진동 해석)

  • 한봉구
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.3 no.1
    • /
    • pp.9-20
    • /
    • 1999
  • An accurate method is presented for flexural vibrations of rhombic plates having all combinations of clamped and free edge conditions. The prime focus here is that the analysis explicitly considers the bending stress singularities that occur in the two opposite, clamped-free corners having obtuse angles of the rhombic plates. Accurate non-dimensional frequencies and normalized contours of the vibratory transverse displacement are presented for rhombic plates having a large enough obtuse angle of 165$^{\circ}$, so that a significant influence of clamped-free corner stress singularities may be understood.

  • PDF

An applied model for steel reinforced concrete columns

  • Lu, Xilin;Zhou, Ying
    • Structural Engineering and Mechanics
    • /
    • v.27 no.6
    • /
    • pp.697-711
    • /
    • 2007
  • Though extensive research has been carried out for the ultimate strength of steel reinforced concrete (SRC) members under static and cyclic load, there was only limited information on the applied analysis models. Modeling of the inelastic response of SRC members can be accomplished by using a microcosmic model. However, generally used microcosmic model, which usually contains a group of parameters, is too complicated to apply in the nonlinear structural computation for large whole buildings. The intent of this paper is to develop an effective modeling approach for the reliable prediction of the inelastic response of SRC columns. Firstly, five SRC columns were tested under cyclic static load and constant axial force. Based on the experimental results, normalized trilinear skeleton curves were then put forward. Theoretical equation of normalizing point (ultimate strength point) was built up according to the load-bearing mechanism of RC columns and verified by the 5 specimens in this test and 14 SRC columns from parallel tests. Since no obvious strength deterioration and pinch effect were observed from the load-displacement curve, hysteresis rule considering only stiffness degradation was proposed through regression analysis. Compared with the experimental results, the applied analysis model is so reasonable to capture the overall cyclic response of SRC columns that it can be easily used in both static and dynamic analysis of the whole SRC structural systems.

New Engineering J and COD Estimation Methods for Axial Through-Wall Cracked Pipes (축방향 관통균열 배관의 새로운 탄소성 J-적분 및 COD 계산식)

  • Huh, Nam-Su;Park, Young-Jae;Kim, Yun-Jae;Kim, Young-Jin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.2
    • /
    • pp.239-246
    • /
    • 2003
  • This paper proposes engineering estimation equations of elastic-plastic J and COD fur axial through-wall cracked pipes under internal pressure. Based on detailed 3-D FE results based on deformation plasticity, the plastic influence functions for fully plastic J and COD solutions are tabulated as a function of the mean radius-to-thickness ratio, the normalized crack length. and the strain hardening. Based on these results, the GE/EPRI-type J and COD estimation equations are proposed and validated against the 3-D FE results based on deformation plasticity. For more general application to general stress-strain laws or to complex loading, the developed GE/EPRI-type solutions are re-formulated based on the reference stress concept. Such a reformulation provides simpler equations for J and COD, which are then further extended to combined internal pressure and bending. The proposed reference stress based J and COD estimation equations are compared with elastic-plastic 3-D FE results using actual stress-strain data for Type 316 stainless steels. The FE results for both internal pressure cases and combined internal pressure and bending cases compare very well with the proposed J and COD estimations.

The Influence of Corner Stress Singularities on the Vibration of Rhombic Plates Having Various Edge Conditions (다양한 연단조건을 갖는 마름모꼴형 평판의 진동에 대한 모서리 응력특이도의 영향)

  • Kim, Joo-Woo;Cheong, Myung-Chae
    • Journal of Korean Society of Steel Construction
    • /
    • v.12 no.4 s.47
    • /
    • pp.363-374
    • /
    • 2000
  • An accurate method is presented for vibrations of rhombic plates having three different combinations of clamped, simply supported, and free edge conditions. A specific feature here is that the analysis explicitly considers the moment singularities that occur in the two opposite corners having obtuse angles of the rhombic plates. Stationary conditions of single-field Lagrangian functional are derived using the Ritz method. Convergence studies of frequencies show that the corner functions accelerate the convergence rate of solutions. In this paper, accurate frequencies and normalized contours of the vibratory transverse displacement are presented for highly skewed rhombic plates, so that a significant effect of corner stress singularities nay be understood.

  • PDF