This paper presents an analytic method of quality function deployment(QFD) that is to maximize customer satisfaction subject to technical and economic sides in process design. We have used Wasserman's normalization method and the analytical hierarchy process(AHP) to determine the intensity of the relationship between customer requirements and process design attributes. This paper also shows cost-quality model the tradeoff between quality and cost as a linear programming(LP) with new constraints that have designated special process required allocating firstly. The cost-quality function deployment of piston ring is presented to illustrate the feasibility of such techniques.
본 연구에서는 일반 토사층에 선단지지된 현장타설말뚝의 재하시험결과로부터 얻은 하중-침하 량곡선을 쌍곡선으로 회귀분석하고 여기에 곡률방정식을 이용하여 최대곡률을 나타내는 하중을 항복하중으로 규정하는 판정법을 개발하였다. 그러나 하중과 침하량의 단위 또는 축척에 따라 최대곡률점의 위치가 변하고 따라서 항복하중도 다르게 판별된다(원상연, 1995). 따라서 하중과 침하량을 정규화(normalization)하고 정규화된 침하량(x축)과 하중축(y축)의 축척이 1:1이 되도록 함으로써 하중과 침하량의 단위와 축척에 상관없이 유일한 최대곡률점을 찾을 수 있었다. 본 논문에서 기존의 판정 법들을 이용하여 각각의 항복하중을 구하고 이들의 평균값을 기준으로 하여 정규화 과정을 검토하였다. 이 판정법을 현장타설말뚝에 대한 연직재하시험결과에 적용하여 연직항복하중을 판정하고, 이 결과를 기존의 판정 법들에 의한 항복하중과의 비교를 실시하였다.
Objectives: Since 1998, the Korea National Health and Nutrition Examination Survey (KNHANES) has been conducted in order to investigate the health and nutritional status of Koreans. The food intake data of individuals in the KNHANES has also been utilized as source dataset for risk assessment of chemicals via food. To improve the reliability of intake estimation and prevent missing data for less-responded foods, the structure of integrated long-standing datasets is significant. However, it is difficult to merge multi-year survey datasets due to ineffective cleaning processes for handling extensive numbers of codes for each food item along with changes in dietary habits over time. Therefore, this study aims at 1) cleaning the process of abnormal data 2) generation of integrated long-standing raw data, and 3) contributing to the production of consistent dietary exposure factors. Methods: Codebooks, the guideline book, and raw intake data from KNHANES V and VI were used for analysis. The violation of the primary key constraint and the $1^{st}-3rd$ normal form in relational database theory were tested for the codebook and the structure of the raw data, respectively. Afterwards, the cleaning process was executed for the raw data by using these integrated codes. Results: Duplication of key records and abnormality in table structures were observed. However, after adjusting according to the suggested method above, the codes were corrected and integrated codes were newly created. Finally, we were able to clean the raw data provided by respondents to the KNHANES survey. Conclusion: The results of this study will contribute to the integration of the multi-year datasets and help improve the data production system by clarifying, testing, and verifying the primary key, integrity of the code, and primitive data structure according to the database normalization theory in the national health data.
최근 몇 년간 딥러닝(deep learning)은 음성 인식, 영상 인식, 물체 검출을 비롯한 다양한 패턴인식 분야에서 혁신적인 성능 발전을 거듭해왔다. 그에 비해 네트워크가 어떻게 작동하는지에 대한 깊은 이해는 잘 이루어지지 않고 있다. 본 논문은 효과적인 신경망 네트워크를 구성하기 위해 네트워크 파라미터들이 신경망 내부에서 어떻게 작동하고, 어떤 역할을 하고 있는지 분석하였다. Faster R-CNN 네트워크를 기반으로 하여 신경망의 과적합(overfitting)을 막는 드랍아웃(dropout) 확률과 앵커 박스 크기, 그리고 활성 함수를 변화시켜 학습한 후 그 결과를 분석하였다. 또한 드랍아웃과 배치 정규화(batch normalization) 방식을 비교해보았다. 드랍아웃 확률은 0.3일 때 가장 좋은 성능을 보였으며 앵커 박스의 크기는 최종 물체 검출 성능과 큰 관련이 없다는 것을 알 수 있었다. 드랍아웃과 배치 정규화 방식은 서로를 완전히 대체할 수는 없는 것을 확인할 수 있었다. 활성화 함수는 음수 도메인의 기울기가 0.02인 leaky ReLU가 비교적 좋은 성능을 보였다.
고처리 시퀀싱과 빅데이터 및 크라우드 컴퓨팅에 혁신이 일어나면서, RNA 시퀀싱도 획기적인 변화가 일어, RNAseq가 기존의 DNA 마이크로어레이를 대체하여, 빅-데이터를 형성하고 있다. 현재, RANseq 이용한 유전자 조절망(GRN) 까지 연구가 활성화 되고 있는데, 그 중 한 분야가 GRN의 기본 요소인 특징 유전자를 빅-데이터에서도 구별하고 기존에 알려진 것 외에 새로운 역할을 찾는 것이다. 그러나, 이러한 연구 방향에 부합하는 빅-데이터를 처리할 수 있는 컴퓨테이션 방법이 아직까지 매우 부족하다. 따라서 본 논문에서는 RNAseq 빅-데이터를 처리할 수 있도록 기존의 SVM-RFE알고리즘을 밀집도-의존 정규화에 병합하여, NCBI-GEO와 같은 빅-데이터에서 공개된 일부의 데이터에 개선된 알고리즘을 적용하고 해당 알고리즘에 의해 나온 결과의 성능을 평가한다.
Purpose: The objective of this research was to select high quality cucumber (cucumis sativus) seed by classifying into viable or non-viable one using Raman spectroscopy. Method: Both transmission and back-scattering Raman spectra of viable and non-viable seeds in the range from $150cm^{-1}$ to $1890cm^{-1}$ were collected with a laser illumination. Results: The Raman spectra of cucumber seed showed Raman peaks with features of polyunsaturated fatty acids. The partial least squares-discriminant analysis (PLS-DA) to predict viable seeds was developed with measured transmission and backscattering spectra with Raman spectroscopy and germination test results. Various types of spectra pretreatment were investigated to develop the classification models. The results of developed PLS-DA models using the transmission spectra with mean normalization or range normalization, and back-scattering spectra with mean normalization treatment or baseline correction showed 100% discrimination accuracy. Conclusions: These results showed that Raman spectroscopy technologies can be used to select the high quality cucumber seeds.
최근 노이즈 제거를 위한 심층 학습 모델에 대한 연구가 활발하게 진행되고 있다. 특히 블라인드 노이즈 제거 (blind denoising) 기술이 발전하면서 깨끗한 영상을 얻기가 불가능한 영상의 영역에서 노이즈 영상만으로 심층 학습 기반 노이즈 제거 모델의 학습이 가능해졌다. 우리는 관찰된 노이즈 영상으로부터 깨끗한 영상을 얻기 위해 더는 깨끗한 영상과 노이즈 영상의 짝을 이루는 데이터를 필요하지 않는다. 하지만 노이즈 영상과 깨끗한 영상 간의 차이가 큰 데이터라면 노이즈 영상만으로 학습된 노이즈 제거 모델은 우리가 원하는 품질의 깨끗한 영상을 복원하기 어려울 것이다. 이 문제를 해결하기 위해서 짝지어지지 않는 깨끗한 영상과 노이즈 영상으로 학습한 모델 기반 노이즈 제거 기술은 최근 연구되고 있다. 가장 최신 기술인 ISCL은 깨끗한 영상과 노이즈 영상의 쌍을 기반으로 한 지도학습 기반 모델의 성능과 거의 근접한 성능을 보여 주었다. 우리는 제안된 방법이 ISCL을 포함한 다른 최신 짝을 이루지 않는 영상 기반 노이즈 제거 기술보다 성능이 우수함을 보여준다.
본 연구는 한국인 20대의 남성과 여성을 대상으로 보행 분석상의 표준화 방법 중의 하나인 dimensionless number의 효과를 검정하고 이를 통해 성별간 보행형태를 분석하는데 목적이 있다. 피험자는 기술표준원에서 제공하는 한국인 표준체형 및 연령 분류 체계에 맞춰 선정하였으며, 3차원 동작분석 시스템이 사용되었다. 데이터 분석을 위한 소프트웨어로는 Cortex, OrthoTrak, Matlab, Excel이 사용되었으며 통계검정을 위해서 SPSS를 사용하였다. 분석 결과를 살펴보면, Hof(1996)의 dimensionless number 변환을 통한 20대 성별 간 보행 형태는 시·공간 변인인 stride length, step length, stride time, step time, 보행속도(velocity), cadence 모두에서 유의한 차이가 없었으며, 표준화 전·후에 따라 통계분석의 결과가 달라짐을 확인하였다. 따라서 보행 분석에서 데이터의 표준화 방법 중의 하나인 dimensionless number의 적용은 통계학적 검정에 영향을 줄만큼 C.V. 값을 변화시키는 것으로 확인되었다. 본 연구를 통해, 상호 비교를 위한 보행연구에서 dimensionless number를 이용한 표준화 방식은 피험자의 신체적 특성이 분석에 미치는 영향을 제거하고 보다 정확한 통계 검정을 위해서 반드시 요구되는 과정이라는 것을 확인할 수 있었다.
최근 손등이나 손바닥, 손가락의 정맥 혈관 패턴정보를 이용하여 개인을 인증하는 기술은 훼손, 복제 및 위조가 불가능하다는 장점으로 인해 연구가 활발하게 진행 중이다. 정맥영상은 피부층과 내부 골격등에 의한 빛의 산란 및 불균일한 내부 조직 때문에 정맥 영역이 뚜렷하게 나타나지 않아, 영상처리 방법을 통해 정맥 영역을 정확하게 분리하는 것이 어렵다. 특히 한 장의 영상에서도 밝기가 균일하지 않아서 지역 영역 단위로 다른 이진 임계치를 사용함으로 인해 처리시간이 오래 걸리고 혈관의 불연속면이 발생한다는 문제가 있다. 이를 해결하기 위해 본 논문에서는 조명 정규화 기반의 고속 정맥 영역 추출 방법을 제안한다. 본 연구는 기존의 방법에 비해 다음과 같은 장점을 가지고 있다. 첫째, 정맥영상의 불균일한 조명을 제거하기 위해 저역통과필터를 통해 조명 성분을 취득하고 이를 통해 조명성분이 균일한 영상을 얻었다. 둘째, 조명 정규화 영상으로부터 단일 임계치를 통해 얻어진 이진 영상의 처리를 통해 혈관 경로를 추출함으로써, 처리시간을 단축하였다. 실험을 통해 기존 방법들에 비해 혈관 영역 추출 정확도가 상승하고, 처리속도가 단축된 결과를 얻을 수 있었다.
2022년 이전에는 하천 관리 주체가 이원화되어 생태하천 복원사업을 계획 및 시행하는 과정에서 많은 혼선이 발생하였다. 이로 인해 하천 수생태계 건강성이 확보되지 못하였다. 그러나 2022년 환경부가 생태하천 복원사업을 주관하게 되며, 하천 수생태계 건강성 확보는 복원사업에서 필수적인 요소가 되었다. 따라서 본 연구에서는 기수역과 람사르 습지가 위치하여 하천 수생태계 건강성 확보가 필수적인 한강하구 지역을 대상으로 복원사업이 필요한 하천 구역을 선정하였다. 우선, 생태하천 복원사업의 세부 조사항목을 기반으로 하천의 물리적, 화학적, 공간/인문학적, 수생태계 건강성 평가지수를 산정하였다. 산정된 평가지수에 순위정렬(ranking), 스케일 재조정(re-scaling), z 점수(z-score), t 점수(t-score) 표준화(normalization) 방법을 적용하였으며, 도출된 값을 비교·분석하였다. 이후 각 평가지수에 엔트로피 가중치 방법(entropy weight method)을 적용하였다. 해당 과정을 통해 한강하구 지역 내에서 수생태계 건강성 확보를 목적으로 복원사업이 요구되는 하천(목감천, 안양천 등)을 선정하였다. 본 연구의 결과는 생태하천 복원사업의 우선순위를 선정하는 과정에서 기초연구 자료로 활용될 수 있을 것이다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.