Browse > Article
http://dx.doi.org/10.15701/kcgs.2021.27.5.45

Optimized Normalization for Unsupervised Learning-based Image Denoising  

Lee, Kanggeun (UNIST)
Jeong, Won-Ki (Korea University)
Abstract
Recently, deep learning-based denoising approaches have been actively studied. In particular, with the advances of blind denoising techniques, it become possible to train a deep learning-based denoising model only with noisy images in an image domain where it is impossible to obtain a clean image. We no longer require pairs of a clean image and a noisy image to obtain a restored clean image from the observation. However, it is difficult to recover the target using a deep learning-based denoising model trained by only noisy images if the distribution of the noisy image is far from the distribution of the clean image. To address this limitation, unpaired image denoising approaches have recently been studied that can learn the denoising model from unpaired data of the noisy image and the clean image. ISCL showed comparable performance close to that of supervised learning-based models based on pairs of clean and noisy images. In this study, we propose suitable normalization techniques for each purpose of architectures (e.g., generator, discriminator, and extractor) of ISCL. We demonstrate that the proposed method outperforms state-of-the-art unpaired image denoising approaches including ISCL.
Keywords
Normalization; Denoising; Unsupervised Learning; Deep Learning;
Citations & Related Records
연도 인용수 순위
  • Reference
1 K. Zhang, W. Zuo, Y. Chen, D. Meng, and L. Zhang, "Beyond a gaussian denoiser: Residual learning of deep cnn for image denoising," IEEE Trans. Image Process., vol. 26, no. 7, pp. 3142-3155, Jul. 2017.   DOI
2 K. Lee and W.-K. Jeong, "Noise2kernel: Adaptive self-supervised blind denoising using a dilated convolutional kernel architecture," 2020. [Online]. Available: https://arxiv.org/abs/2012.03623
3 Y. Quan, M. Chen, T. Pang, and H. Ji, "Self2Self with dropout: Learning self-supervised denoising from single image," in Proc. IEEE conf. Comput. Vis. Pattern Recognit., Jun. 2020, pp. 1890-1898.
4 H. Nam and H.-E. Kim, "Batch-instance normalization for adaptively style-invariant neural networks," in Proc. Adv. Neural Inf. Process. Syst, vol. 31, 2018, pp. 2558-2567.
5 J. L. Ba, J. R. Kiros, and G. E. Hinton, "Layer normalization," 2016. [Online]. Available: https://arxiv.org/abs/1607.06450
6 M. Arjovsky, S. Chintala, and L. Bottou, "Wasserstein generative adversarial networks," in Proc. Int. Conf. Mach. Learn., vol. 70, Aug. 2017, pp. 214-223.
7 Z. Hong, X. Fan, T. Jiang, and J. Feng, "End-to-end unpaired image denoising with conditional adversarial networks," in Proc. Assoc. Adv. Artific. Intell., Apr. 2020, pp. 4140-4149.
8 K. Lee and W.-K. Jeong, "ISCL: Interdependent self-cooperative learning for unpaired image denoising," IEEE Trans. Med. Imag., vol. 40, no. 11, pp. 3238-3248, 2021. [Online]. Available: https://doi.org/10.1109/TMI.2021.3096142   DOI
9 D. G. C. Hildebrand, B. J. Graham, and W.-C. A. Lee, "Grid-tape for fast nanoscale imaging," 2017.
10 B. J. Graham, D. G. C. Hildebrand, and W.-C. A. Lee, "Grid-tape imaging stage," 2018.
11 T. Minh Quan, D. Grant Colburn Hildebrand, K. Lee, L. A. Thomas, A. T. Kuan, W.-C. Allen Lee, and W.-K. Jeong, "Removing imaging artifacts in electron microscopy using an asymmetrically cyclic adversarial network without paired training data," in Proc. IEEE Int. Conf. Comput. Vis. Workshop, Oct. 2019.
12 D. Bashkirova, B. Usman, and K. Saenko, "Adversarial self-defense for cycle-consistent gans," in Proc. Adv. Neural Inf. Process. Syst, vol. 32, 2019.
13 J.-Y. Zhu, T. Park, P. Isola, and A. A. Efros, "Unpaired image-to-image translation using cycle-consistent adversarial networks," in Proc. IEEE Int. Conf. Comput. Vis., 2017, pp. 2223-2232.
14 Y. Huang, W. Xia, Z. Lu, Y. Liu, H. Chen, J. Zhou, L. Fang, and Y. Zhang, "Noise-powered disentangled representation for unsupervised speckle reduction of optical coherence tomography images," IEEE Trans. Med. Imag., 2020.
15 S. Ioffe and C. Szegedy, "Batch normalization: Accelerating deep network training by reducing internal covariate shift," ser. Proc. Int. Conf. Mach. Learn., F. Bach and D. Blei, Eds., vol. 37, Lille, France, Jul. 2015, pp. 448-456.
16 J. Lehtinen, J. Munkberg, J. Hasselgren, S. Laine, T. Karras, M. Aittala, and T. Aila, "Noise2Noise: Learning image restoration without clean data," in Proc. Int. Conf. Mach. Learn., J. Dy and A. Krause, Eds., vol. 80, Jul. 2018, pp. 2965-2974.
17 A. Krull, T.-O. Buchholz, and F. Jug, "Noise2void-learning denoising from single noisy images," in Proc. IEEE conf. Comput. Vis. Pattern Recognit., Jun. 2019, pp. 2129-2137.
18 J. Batson and L. Royer, "Noise2Self: Blind denoising by self-supervision," in Proc. Int. Conf. Mach. Learn., Mar. 2019, pp. 524-533.
19 H. Liao, W.-A. Lin, S. K. Zhou, and J. Luo, "Adn: Artifact disentanglement network for unsupervised metal artifact reduction," IEEE Trans. Med. Imag., vol. 39, no. 3, pp. 634-643, 2019.   DOI
20 D. Ulyanov, A. Vedaldi, and V. Lempitsky, "Instance normalization: The missing ingredient for fast stylization," 2016. [Online]. Available: https://arxiv.org/abs/1607.08022
21 T. Miyato, T. Kataoka, M. Koyama, and Y. Yoshida, "Spectral normalization for generative adversarial networks," in Proc. Int. Conf. Learn. Represent, 2018.
22 A. Brock, J. Donahue, and K. Simonyan, "Large scale gan training for high fidelity natural image synthesis," in Proc. Int. Conf. Learn. Represent, 2018.
23 I. Gulrajani, F. Ahmed, M. Arjovsky, V. Dumoulin, and A. C. Courville, "Improved training of wasserstein gans," in Proc. Adv. Neural Inf. Process. Syst, 2017, pp. 5767-5777.
24 K. Dabov, A. Foi, V. Katkovnik, and K. Egiazarian, "Image denoising by sparse 3-d transform-domain collaborative filtering," IEEE Trans. Image Process., vol. 16, no. 8, pp. 2080-2095, Aug. 2007.   DOI
25 H. Chen, Y. Zhang, M. K. Kalra, F. Lin, Y. Chen, P. Liao, J. Zhou, and G. Wang, "Low-dose ct with a residual encoder-decoder convolutional neural network," IEEE Trans. Med. Imag., vol. 36, no. 12, pp. 2524-2535, 2017.   DOI
26 P. Luo, R. Zhang, J. Ren, Z. Peng, and J. Li, "Switchable normalization for learning-to-normalize deep representation," IEEE Trans. Pattern Anal. Mach. Intell., vol. 43, no. 2, pp. 712-728, 2019.
27 B. J. Graham, D. G. C. Hildebrand, A. T. Kuan, J. T. Maniates-Selvin, L. A. Thomas, B. L. Shanny, and W.-C. A. Lee, "High-throughput transmission electron microscopy with automated serial sectioning," bioRxiv, 2019. [Online]. Available: https://www.biorxiv.org/content/early/2019/06/02/657346
28 Z. Huang, Z. Chen, Q. Zhang, G. Quan, M. Ji, C. Zhang, Y. Yang, X. Liu, D. Liang, H. Zheng, et al., "Cagan: a cycle-consistent generative adversarial network with attention for low-dose ct imaging," IEEE Trans. Comput. Imag., vol. 6, pp. 1203-1218, 2020.   DOI
29 Y. Wu and K. He, "Group normalization," in Eur. Conf. Comput. Vis., 2018, pp. 3-19.