• Title/Summary/Keyword: normal flow

Search Result 1,928, Processing Time 0.034 seconds

The Analysis of Flow Distribution in the Core Channel of the HANARO Flow Simulated Test Facility (하나로 유동모의 시험설비의 노심채널 유동분포 해석)

  • Park Y C.;Kim K. R.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2004.10a
    • /
    • pp.151-154
    • /
    • 2004
  • The HANARO, a multi-purpose research reactor of 30 MWth open-tank-in-pool type, has been under normal operation since its initial criticality in February, 1995. Many experiments should be safely performed to activate the utilization of the HANARO. A flow simulated test facility has been developed for the verification of structural integrity of those experimental facilities prior to loading In the HANARO. This test facility is composed of three major parts; a half-core structure assembly, flow circulation system and support system. The half-core structure assembly is composed of plenum, grid plate, core channel with flow tubes, chimney and dummy pool. The flow channels are to be filled with flow orifices to simulate similar flow characteristics to the HANARO. This paper describes an analysis of the flow distribution of the cote channel and compares with the test results. As results, the analysis showed similar flow characteristics compared with those in the test results.

  • PDF

Study on Improved Loss Model for Incompressible Regenerative Turbomachines (비압축성 재생형 기계의 손 실 모델 개선에 관한 연구)

  • Choi, Won-Chul;Yoo, Il-Su;Chung, Myung-Kyoon
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.03b
    • /
    • pp.341-344
    • /
    • 2008
  • The complicated helical flow formed in the regenerative turbomachines is usually decomposed into a peripheral component and a circulatory component. On the basis of the momentum exchange theory, the circulatory flow plays a critical role of imparting angular momentum to the peripheral flow. Therefore, the accuracy of performance prediction is dominated by the circulatory flow modeling. Until now the circulatory flow has been accounted of a standstill flow normal to the peripheral flow. However, the circulatory path from the impeller exit to the re-entrance inlet is exposed to the adverse pressure gradient, so it would be more realistic to describe that the circulatory flow is formed on the skewed plane not perpendicular to the peripheral flow. Present study suggests new circulatory flow loss model including the effect of adverse pressure gradient and modifies the effective circulatory flow rate and circulatory pivot which were previously published.

  • PDF

The Technique and Normal Values of Transcranial Doppler Ultrasonography(TCD) (Transcranial Doppler Ultrasonography (TCD)의 시행 방법 및 정상치)

  • Sohn, Young Ho
    • Annals of Clinical Neurophysiology
    • /
    • v.1 no.1
    • /
    • pp.39-46
    • /
    • 1999
  • Transcranial doppler ultrasonography (TCD) is a new, non-invasive and easily applicable method to evaluate cerebral hemodynamics. Last 10 years, its use in Korea has been dramatically expanded, but the qualification of TCD laboratory has yet to be settled. Since duplex sonography is seldom used in Korea, we have to depend totally on TCD to evaluate cerebral hemodynamic changes. Thus, all of the available data from every detectabler cerebral arteries has to be obtained for accurate interpretation of TCD measurements. Moreover, flow direction and wave form should be concerned in addition to the flow velocity. In this article, I present technique to measure the anterior, meddle and posterior cerebral arteries, the internal carotid artery siphon and at cervical level, and the vertebral and the basilar artery, and normal values for these measurements which is essential for the adequate interpretation.

  • PDF

In-Cylinder Swirl Generation Characteristics according to Intake Valve Angle (흡입 밸브 각도에 따른 실린더 내 와류 발생 특성)

  • Ohm, In-Yong;Park, Chan-Jun
    • Journal of the Korean Society of Visualization
    • /
    • v.3 no.2
    • /
    • pp.79-87
    • /
    • 2005
  • Two engines, one is conventional DOHC 4 valve and the other is narrow valve angle, were used to compare the characteristics of swirl motion generation in the cylinder. One intake port is deactivated to induce swirl flow. A PIV (Particle Image Velocimetry) was applied to measure in-cylinder velocity field according to inlet valve angle during intake and compression stroke. The results show that the flow patterns of narrow valve engine are much more stable and well arranged compared with the normal engine over the entire intake and compression stroke except early intake stage, and very strong swirl motion is generated at the end of compression stage in this engine nevertheless using straight port which is unfavorable for swirl generating. In the normal engine, however, strong swirl motion induced during intake stroke is destroyed as the compression progresses.

  • PDF

Characteristics of Accelerations in Turbulent Channel Flow (난류 채널 유동에서의 가속도 특성)

  • Yeo, Kyong-Min;Lee, Chang-Hoon
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.1801-1805
    • /
    • 2003
  • The intermittent characteristics of fluid particle accelerations near the wall are investigated with the higher-order statistics and the probability density functions (PDF) by using a direct numerical simulation of turbulent channel flow. Also, the behaviors of acceleration associated with the coherent structures are discussed. The flatness factor of wall-normal acceleration is extremely high near the wall and it exceeds the previously reported value obtained in isotropic turbulence. The presence of the wall seems to make the accelerations more intermittent and the associated mechanism is explained with the PDFs. The skewness factor of wall-normal acceleration indicates that accelerations are associated with the streamwise vortices.

  • PDF

COMPLEXITY OF CONTINUOUS SEMI-FLOWS AND RELATED DYNAMICAL PROPERTIES

  • Zhang, Feng;He, Lian-Fa;Lu, Qi-Shao
    • Journal of the Korean Mathematical Society
    • /
    • v.46 no.2
    • /
    • pp.225-236
    • /
    • 2009
  • The equicontinuity and scattering properties of continuous semi-flows are studied on a compact metric space. The main results are obtained as follows: first, the complexity function defined by the spanning set is bounded if and only if the system is equicontinuous; secondly, if a continuous semi-flow is topologically weak mixing, then it is pointwise scattering; thirdly, several equivalent conditions for the time-one map of a continuous semi-flow to be scattering are presented; Finally, for a minimal continuous map it is shown that the "non-dense" requirement is unnecessary in the definition of scattering by using open covers.

Development of Inter-propellant Seal for High Thrust Turbopump (고추력 터보펌프용 추진제 혼합 방지 실 개발)

  • Kwak, Hyun-D.;Jeon, Seong-Min;Kim, Jin-Han
    • Tribology and Lubricants
    • /
    • v.24 no.6
    • /
    • pp.349-354
    • /
    • 2008
  • An inter-propellant seal (IPS) for high thrust turbopump is designed. With given operating conditions and requirements, the inter-propellant seal is designed to satisfy the leakage characteristics which is less than 0.1% of normal flow rate of pumps. A numerical analysis is developed to predict the leakage flow rate. The results show that the maximum leakage of LOX and kerosene are less than 0.1% of normal flow rate of pumps, respectively. Based on the numerical analysis results, the detail of IPS is performed. Finally a prototype of IPS is manufactured to perform sets of performance tests in the near future.

The Effects of Yaw on the Vortex-Shedding Sound from a Circular Cylinder (원형실린더 와류발생 소음에 대한 경사각 효과)

  • 홍훈빈;최종수
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1997.10a
    • /
    • pp.263-270
    • /
    • 1997
  • For a cylinder in a uniform flow stream, sound is generated by the fluctuating pressure on the cylinder surface due to the vortex shedding behind the cylinder. It is known that the major parameters to predict the sound pressure are the characteristic length of the flow along the cylinder axis and the fluctuating lift coefficient. These parameters strongly depend on the Reynolds number and the yaw angle of the cylinder to the free stream. In this experimental study the effects of yaw on the flow parameters, and consequently on the generated sound are investigated. The surface pressure and the radiated sound are measured simultaneously for different yaw angles and showed that the reduced normal velocity component to the cylinder axis reduces the unsteady lift fluctuation which results in lowered sound press-are level, However, experimental result shows that "the cosine law" which uses the normal velocity component as a characteristic velocity for noise Generation from a yawed cylinder needs to be carefully reviewed. reviewed.

  • PDF

Spatiotemporal Patched Frames for Human Abnormal Behavior Classification in Low-Light Environment (저조도 환경 감시 영상에서 시공간 패치 프레임을 이용한 이상행동 분류)

  • Widia A. Samosir;Seong G. Kong
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2023.11a
    • /
    • pp.634-636
    • /
    • 2023
  • Surveillance systems play a pivotal role in ensuring the safety and security of various environments, including public spaces, critical infrastructure, and private properties. However, detecting abnormal human behavior in lowlight conditions is a critical yet challenging task due to the inherent limitations of visual data acquisition in such scenarios. This paper introduces a spatiotemporal framework designed to address the unique challenges posed by low-light environments, enhancing the accuracy and efficiency of human abnormality detection in surveillance camera systems. We proposed the pre-processing using lightweight exposure correction, patched frames pose estimation, and optical flow to extract the human behavior flow through t-seconds of frames. After that, we train the estimated-action-flow into autoencoder for abnormal behavior classification to get normal loss as metrics decision for normal/abnormal behavior.

Influence of fluidelastic vibration frequency on predicting damping controlled instability using a quasi-steady model in a normal triangular tube array

  • Petr Eret
    • Nuclear Engineering and Technology
    • /
    • v.56 no.4
    • /
    • pp.1454-1459
    • /
    • 2024
  • Researchers have applied theoretical and CFD models for years to analyze the fluidelastic instability (FEI) of tube arrays in steam generators and other heat exchangers. The accuracy of each approach has typically been evaluated using the discrepancy between the experimental critical flow velocity and the predicted value. In the best cases, the predicted critical flow velocity was within an order of magnitude comparable to the measured one. This paper revisits the quasi-steady approach for damping controlled FEI in a normal triangular array with a pitch ratio of P/d = 1.375. The method addresses the fluidelastic frequency at the stability threshold as an input parameter for the approach. The excellent agreement between the estimated stability thresholds and the equivalent experimental results suggests that the fluidelastic frequency must be included in the quasi-steady analysis, which requires minimal computing time and experimental data. In addition, the model allows a simple time delay analysis regarding flow convective and viscous effects.