• 제목/요약/키워드: nonstationary process

검색결과 62건 처리시간 0.029초

ELECTRODYNAMIC JET FORMATION

  • Park, Seok-Jae
    • 천문학회지
    • /
    • 제23권1호
    • /
    • pp.63-70
    • /
    • 1990
  • The original axisymmetric, stationary electrodynamic model of the central engine in an active galactic nucleus proposed by Macdonald and Thorne consists of a supermassive black hole with magnetic field lines that pass through the region just outside the event horizon of the black hole. Each magnetic field line rotates with a constant angular velocity which will exceed the speed of light at large radii. Even though the field lines are purely mathematical entities this condition sets a stringent physical constraint on the motion of the magnetic field lines and the particles on them. In this paper we will show that we can remove this auxiliary constraint in our model by allowing nonstationary processes. As a result the magnetic field lines can be twisted and wound up in a region lying outside of the quasi-stationary magnetosphere of the black hole. We conclude that astrophysical jets are formed in that region due to the twisted and wound magnetic field lines powered by the Blandford-Znajek process and the other driving forces.

  • PDF

A New Algorithm for Automated Modeling of Seasonal Time Series Using Box-Jenkins Techniques

  • Song, Qiang;Esogbue, Augustine O.
    • Industrial Engineering and Management Systems
    • /
    • 제7권1호
    • /
    • pp.9-22
    • /
    • 2008
  • As an extension of a previous work by the authors (Song and Esogbue, 2006), a new algorithm for automated modeling of nonstationary seasonal time series is presented in this paper. Issues relative to the methodology for building automatically seasonal time series models and periodic time series models are addressed. This is achieved by inspecting the trend, estimating the seasonality, determining the orders of the model, and estimating the parameters. As in our previous work, the major instruments used in the model identification process are correlograms of the modeling errors while the least square method is used for parameter estimation. We provide numerical illustrations of the performance of the new algorithms with respect to building both seasonal time series and periodic time series models. Additionally, we consider forecasting and exercise the models on some sample time series problems found in the literature as well as real life problems drawn from the retail industry. In each instance, the models are built automatically avoiding the necessity of any human intervention.

Classification of Time-Series Data Based on Several Lag Windows

  • Kim, Hee-Young;Park, Man-Sik
    • Communications for Statistical Applications and Methods
    • /
    • 제17권3호
    • /
    • pp.377-390
    • /
    • 2010
  • In the case of time-series analysis, it is often more convenient to rely on the frequency domain than the time domain. Spectral density is the core of the frequency-domain analysis that describes autocorrelation structures in a time-series process. Possible ways to estimate spectral density are to compute a periodogram or to average the periodogram over some frequencies with (un)equal weights. This can be an attractive tool to measure the similarity between time-series processes. We employ the metrics based on a smoothed periodogram proposed by Park and Kim (2008) for the classification of different classes of time-series processes. We consider several lag windows with unequal weights instead of a modified Daniel's window used in Park and Kim (2008). We evaluate the performance under various simulation scenarios. Simulation results reveal that the metrics used in this study split the time series into the preassigned clusters better than do the raw-periodogram based ones proposed by Caiado et al. 2006. Our metrics are applied to an economic time-series dataset.

혼합 분포와 은닉 과정 모의를 통한 비정상성 강우/빈도 빈도해석: 전지구 기상학적 변동성의 역할 (Mixed distributions and Laten Process over Nonstationary Rainfall/Flood Frequency Estimates over South Korea: The Role of Large Scale Climate Pattern)

  • 권현한
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2018년도 학술발표회
    • /
    • pp.8-8
    • /
    • 2018
  • 전통적인 빈도해석은 정상성 가정을 기초로 단일 확률분포를 강우 및 홍수량 자료에 적용하는 과정을 통해 확률수문량을 추정하는 것을 목적으로 하고 있다. 그러나 전지구적인 기상학적 변동성 및 기후변화로 기인하는 극치수문량의 발생 빈도 및 양적 크기의 변화는 확률통계학적 관점에서 서로 다른 분포특성을 가지게 된다. 대표적인 기상변동성인 엘니뇨가 발생하는 경우 지역에 따라 홍수 및 가뭄이 발생 발생하게 되며, 이러한 극치수문량은 일반적으로 나타나는 홍수 및 가뭄의 분포특성과는 상이한 경우가 많다. 즉, 2개 이상의 확률분포 특성이 혼재된 혼합분포의 특성을 가지는 경우가 나타내게 되며 이를 고려한 빈도해석 기법의 개발 및 적용이 필요하다. 혼합분포를 활용한 빈도해석에서 가장 중요한 사항 중에 하나는 개별 분포에 적용되는 가중치를 추정하는 것으로서 통계학적 관점에서 자료의 특성에 근거하여 내재되어 있는 은닉상태(latent process)를 추정하는 과정과 유사하다. 이와 더불어 앞서 언급된 기상학적 변동성을 빈도해석에 반영하기 위한 비정상성 해석기법의 개발 및 적용도 필요하다. 본 연구에서는 혼합분포를 활용한 비정상성빈도해석모형을 개발하는데 목적이 있으며 개별매개변수의 동적거동 뿐만 아니라 가중치에 대한 시간적인 종속성도 고려할 수 있는 모형으로 동적모형으로 다양한 실험적 해석이 가능하다. 본 연구에서는 개발된 모형을 기반으로 엘니뇨와 같은 기상변동성에 따른 강우 및 홍수빈도해석 측면에서 은닉상태에 변화, 이로 인한 확률분포의 특성 및 설계수문량의 동적변동성을 평가하고자 한다.

  • PDF

Estimation of Brain Connectivity during Motor Imagery Tasks using Noise-Assisted Multivariate Empirical Mode Decomposition

  • Lee, Ki-Baek;Kim, Ko Keun;Song, Jaeseung;Ryu, Jiwoo;Kim, Youngjoo;Park, Cheolsoo
    • Journal of Electrical Engineering and Technology
    • /
    • 제11권6호
    • /
    • pp.1812-1824
    • /
    • 2016
  • The neural dynamics underlying the causal network during motor planning or imagery in the human brain are not well understood. The lack of signal processing tools suitable for the analysis of nonlinear and nonstationary electroencephalographic (EEG) hinders such analyses. In this study, noise-assisted multivariate empirical mode decomposition (NA-MEMD) is used to estimate the causal inference in the frequency domain, i.e., partial directed coherence (PDC). Natural and intrinsic oscillations corresponding to the motor imagery tasks can be extracted due to the data-driven approach of NA-MEMD, which does not employ predefined basis functions. Simulations based on synthetic data with a time delay between two signals demonstrated that NA-MEMD was the optimal method for estimating the delay between two signals. Furthermore, classification analysis of the motor imagery responses of 29 subjects revealed that NA-MEMD is a prerequisite process for estimating the causal network across multichannel EEG data during mental tasks.

BCI에서 EEG 기반 효율적인 감정 분류를 위한 LSTM 하이퍼파라미터 최적화 (LSTM Hyperparameter Optimization for an EEG-Based Efficient Emotion Classification in BCI)

  • ;;임창균
    • 한국전자통신학회논문지
    • /
    • 제14권6호
    • /
    • pp.1171-1180
    • /
    • 2019
  • 감정은 인간의 상호 작용에서 중요한 역할을 하는 심리 생리학적 과정이다. 감성 컴퓨팅은 감정을 이해하고 조절할 수 있는 인간 인지 인공 지능의 개발하는데 중점을 둔다. 우울증, 자폐증, 주의력 결핍 과잉 행동 장애 및 게임 중독과 같은 정신 질환이 감정과 관련되어 있기 때문에 이러한 분야의 연구가 중요하다. 감정 인식에 대한 노력에도 불구하고, 비정상적인 EEG 신호로부터의 감정 검출은 여전히 높은 수준의 추상화를 요구하기에 정교한 학습 알고리즘이 필요하다. 이 논문에서는 EEG 기반으로 효율적인 감정 분류를 위해 LSTM을 위한 최적의 하이퍼파라미터를 파악하고자 다양한 실험을 수행하여 이를 분석한 결과를 제시하였다.

Monte Carlo Simulation of MR Damper Landing Gear Taxiing Mode under Nonstationary Random Excitation

  • Lee, Hyo-Sang;Jang, Dae-Sung;Hwang, Jai-Hyuk
    • 항공우주시스템공학회지
    • /
    • 제14권4호
    • /
    • pp.10-17
    • /
    • 2020
  • When an aircraft is taxiing, excitation force is applied according to the shape of the road surface. The sprung mass acceleration caused by the excitation of the road surface negatively affects the feeling of boarding. This paper addresses the verification process of the semi-active control method applied to improve the feeling of boarding. The Magneto-Rheological damper landing gear model is employed alongside the control method. It is a Oleo-Pneumatic damper filled with a fluid having the characteristics of increasing yield stress when subjected to a magnetic field. The control method involves verifying Skyhook Control Type2 developed by Skyhook control. The Sinozuka white noise model that considers runway characteristics was employed for the road surface in the simulation. The runway road surface obtained through this model has stochastic characteristics, so the dynamic characteristics were analyzed by applying Monte-Carlo simulation. A dynamic analysis was conducted by co-simulating the landing gear model made by RecurDyn and the control method designed by Simulink. Simulation results show that the Skyhook Control Type2 method has the best control effect in the low speed range compared to the passive type (without control) and skyhook control.

비정상성 Markov Chain Model을 이용한 통계학적 Downscaling 기법 개발 (Development of Statistical Downscaling Model Using Nonstationary Markov Chain)

  • 권현한;김병식
    • 한국수자원학회논문집
    • /
    • 제42권3호
    • /
    • pp.213-225
    • /
    • 2009
  • 기존의 정상성 Markov Chain 모형은 자료 자체의 Markov 특성만을 고려하여 모의하는 기법으로서 수자원 설계에서 여러 가지 목적으로 이용되어 지고 있다. 그러나 일강수량의 천이확률 및 매개변수 등이 과거와 일정하다는 정상성을 기본 가정으로 하기 때문에 평균의 변동성 등과 같은 외부충격을 모형에 적용할 수 없다. 이러한 관점에서 본 연구의 가장 큰 목적은 기존일강수량 모형을 외부인자를 받아들일 수 있는 모형으로 개발하는 것이다. 즉, Markov Chain 모형의 매개변수인 천이확률과 확률분포형의 매개변수 등을 연결함수(link function)를 통해 외부인자와 연동하도록 하였으며 정준상관분석을 통해 매개변수를 추정하였다. 개발된 모형을 서울지방 1961-2006년까지의 일강수량 자료를 대상으로 검증하는 절차를 가졌다. 추정된 결과를 보면 계절강수량의 특성뿐만 아니라 일강수량의 특성 또한 적절하게 모의되는 것을 확인할 수 있다. 따라서 본 연구에서 개발된 모형은 GCM 예측결과를 입력자료로 활용한다면 일강수계열의 장단기 모의를 위한 downscaling 기법으로 사용될 수 있다. 또한, 기후변화 시나리오가 입력자료로 이용된다면 기후변화에 따른 수자원 영향 평가를 위한 downscaling 기법으로 활용이 가능할 것으로 판단된다.

교통정보 수신율 변화에 따른 운전자의 경로선택과 학습과정 (Effect of Guidance Information Receiving Ratio on Driver's Route Choice Behavior and Learming Process)

  • 도명식;석종수;채정환
    • 대한교통학회지
    • /
    • 제22권5호
    • /
    • pp.111-122
    • /
    • 2004
  • 본 연구에서는 운전자들의 경로선택 행태에서 교통정보 수신율이 네트워크 전반에 미치는 영향과 각 경로의 주행조건에 대한 운전자의 학습과정에 대해서 살펴보았으며, 교통상황이 정상성 및 비정상성을 따르는 경우, 공공기관의 유입교통량의 대소에 의해 유도되는 정보의 수신율이 증가함으로써 운전자의 경로선택행동이 네트워크에 미치는 영향을 분석하고 정보의 역효과가 나타남을 밝혔다. 또한, 정보수신율이 최적비율 이하인 경우에는 총통행시간이 정보가 없이 오직 자신의 경험에만 의존하는 경우보다 감소하여 정보제공의 효과가 있었지만, 최적비율 이상으로 유동정보에 따라 경로선택을 하는 운전자가 많아지면 정보의 역효과가 발생함도 증명하였다. 나아가, 교통환경이 정상성을 /따르는 경우에는 모든 운전자의 경로조건에 대한 학습과정과 이 경험을 축적함에 따라 어느 일정한 값으로 수렴해감을 알 수 있었다. 교통환경이 비정상성을 따르는 경우에는 주행조건에 대해 돌발적인 진동과 혼란상태가 발생하고 이 경우에도 무정보 환경보다는 어느정도의 비율로 유도정보가 주어지는 것이 네트워크 전체의 통행시간을 감소시킴으로써 정보의 효과가 있음도 확인하였다. 향후, 다양한 교통류 환경을 적용한 대규모 네트워크를 대상으로 한 운전자의 경로선택과 학습행동에 대한 연구와 정보의 정도에 따른 운전자의 행동을 고려한 정보의 제공방안에 대한 연구도 필요할 것으로 판단된다.

BLS 무응답 보정법을 이용한 대체법과 이월대체법에 관한 연구 (A Comparison of BLS Non-Response Adjustment and Cross-Wave Regression Imputation Methods)

  • 이상은;신기일
    • 응용통계연구
    • /
    • 제23권5호
    • /
    • pp.909-921
    • /
    • 2010
  • 패널 자료에서 무응답이 발생한 경우에는 횡시점회귀대체법(cross-wave regression imputation) 등과 같은 대체법을 이용하여 무응답 문제를 해결한다. 최근 표본 틀(sampling frame) 자료를 이용하여 무응답 가중치 보정을 하는 BLS 무응답 보정법은 패널 자료에도 적용 가능한 방법으로 알려져있다. 본 논문에서는 패널자료에서 BLS 무응답 보정법을 이용한 대체법을 연구하였으며 자료가 경향이 있는 비정상시계열(nonstationary process with drift)을 따른 다는 조건하에서 BLS 무응답 보정법과 횡시점회귀대체법의 하나인 이월대체법(carry-over imputation)과의 이론적 관계를 살펴보았다. 모의실험을 통하여 이론적인 결과를 확인하였으며, 2007년 매월노동통계 자료를 이용하여 두 방법의 우수성을 비교하였다.