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Abstract
In the case of time-series analysis, it is often more convenient to rely on the frequency domain than the time

domain. Spectral density is the core of the frequency-domain analysis that describes autocorrelation structures
in a time-series process. Possible ways to estimate spectral density are to compute a periodogram or to average
the periodogram over some frequencies with (un)equal weights. This can be an attractive tool to measure the
similarity between time-series processes. We employ the metrics based on a smoothed periodogram proposed by
Park and Kim (2008) for the classification of different classes of time-series processes. We consider several lag
windows with unequal weights instead of a modified Daniel’s window used in Park and Kim (2008). We evaluate
the performance under various simulation scenarios. Simulation results reveal that the metrics used in this study
split the time series into the preassigned clusters better than do the raw-periodogram based ones proposed by
Caiado et al. (2006). Our metrics are applied to an economic time-series dataset.

Keywords: Clustering, autoregressive model, moving-average model, smoothed periodogram,
nonstationary time series.

1. Introduction

Clustering time-series data has been tried in various scientific research fields. For example, in medicine,
the functional maps of human brain activities receiving a stimulus are obtained using functional mag-
netic resonance imaging(fMRI) data (Golay et al., 1998; Wismüller et al., 2002; Goutte et al., 1999).
Kakizawa et al. (1998) and Shumway (2003) studied seismic phenomena by earthquakes and mining
explosions using clustering and discrimination analysis. An issue in environmental studies is to group
different locations into some clusters, each of which have similar time-series behavior (Macchiato et
al., 1995; Cowpertwait and Cox, 1992).

The first step to cluster time-series data is to clarify how similarity (or dissimilarity) between time
series can be measured. Many metrics that measure the similarity between time series have been
proposed in the last two decades. There are two different approaches for identifying the similarity, as
reviewed by Corduas and Piccolo (2008).

The first approach is to compare time series according to the definition of similarity measures
between their underlying processes based on some distributional (parametric) assumptions. Piccolo
(1990) considered the Euclidean distance measures between the autoregressive expansions based on a
class of autoregressive integrated moving-average(ARIMA) invertible models. Kakizawa et al. (1998)
proposed dissimilarity measures, J-divergence and Chernoff information divergence, between spectral
matrices corresponding to the matrices of autocovariance functions of two zero-mean vector stationary
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time series. Maharaj (2000) proposed a hypothesis testing method for the comparison of two station-
ary time series based on the autoregressive parameters and introduced a clustering method using the
p-values obtained from the test. Shumway (2003) employed modified versions of Kullback-Leibler
discrimination information in order to measure the dissimilarity between non-stationary time series.

The second approach focuses on nonparametric techniques. These have been of less interest ow-
ing to the difficulties of defining reasonable distances between time-series sequences. One possible
distance is the Euclidean metric, which is invariant to reordering the observations and, consequently
does not take into account the correlation structures inherent in a time-series sequence (see Galeano
and Pẽna, 2000). Bohte et al. (1980) and Kovačić (1996) considered distance metrics based on auto-
correlation and cross-correlation structures of the compared time series. Caiado et al. (2006) proposed
new metrics based on the raw periodogram Fourier-transformed from autocovariance functions. Us-
ing simulation, they compared the raw-periodogram based metrics with the ones proposed by Piccolo
(1990) and the ones based on coefficients of autocorrelation, partial autocorrelation, and inverse au-
tocorrelation. Caiado et al. (2006) shows that a metric based on the logarithm of the normalized
periodogram and a metric based on autocorrelation coefficients distinguish autoregressive moving-
average(ARMA) models from ARIMA models with high success rate while neither the Euclidean
metric nor the metric by Piccolo (1990) perform very well.

In terms of the second approach, the work most relevant to this study has been done by Caiado
et al. (2006). They developed new metrics based on the raw periodogram. The raw periodogram
is not a good estimator of spectral density function in that the variance of each periodogram ordi-
nate does not decrease as the sample size increases. Chen et al. (1994) showed that the lag win-
dow was used to estimate the degree of differencing in autoregressive fractionally integrated moving-
average(ARFIMA) models. Park and Kim (2008) considered the time-series clustering based on the
smoothed-periodogram based metrics. However, they merely focused on the real application and used
was only one simple type of lag window called modified Daniell window. Since Priestley (1981)
proved that a smoothed periodogram depends on the type of lag windows, we employ the metrics
based on smoothed periodograms from several lag windows with unequal weights and different lag
widths, and evaluate their performances in the classification of time series by comparing with the
metrics proposed by Caiado et al. (2006).

This paper is organized as follows. In Section 2, we review the current dissimilarity metrics as
well as the metrics based on smoothed periodogram from several lag windows with unequal weights.
The performance of the smoothed-periodogram based metrics are evaluated using simulation studies
in Section 3. In Section 4, our metrics are applied to the same real dataset analyzed in Caiado et al.
(2006). Finally, we present some conclusions and remarks in Section 5.

2. Dissimilarity Metrics on the Frequency Domain

In this section, we briefly explain some fundamental concepts of periodogram, summarize some cur-
rent dissimilarity measures defined on the frequency domain. Most of these were proposed by Caiado
et al. (2006). We also briefly review smoothed-periodogram based on metrics proposed by Park and
Kim (2008).

Suppose that {Xt; t ∈ Z} is a real-valued stationary process with the autocovariance function de-
noted by

γx(h) = E (Xt+hXt) − E (Xt+h) E (Xt)

satisfying
∑∞

h=−∞ |γx(h)| < ∞, where Z is an integer space. With the assumption, the spectral density
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of {Xt} is obtained as, for all ω ∈ [−π, π],

fx(ω) =
1

2π

∞∑
h=−∞

γx(h) exp (−iωh) . (2.1)

One of the notable characteristics of spectral density, fx(ω) is that it completely captures the second
order dependence structures of the stationary process {Xt}. The autocovariance function, γx(h) is
calculated from its spectral density, fx(ω) using the following equation

γx(h) = 2
∫ π

0
fx(ω) cos (ωh) dω.

The basic tool to estimate spectral density is the periodogram. For a stationary time-series process
with finite length, {Xt; t = 1, . . . , n}, the periodogram at the Fourier frequency ω j = 2π j/n for j ∈ Fn,
is defined as

Ix
n

(
ω j

)
=

1
n

∣∣∣∣∣∣∣
n∑

t=1

Xt exp
(
−itω j

)∣∣∣∣∣∣∣
2

,

where Fn = { j ∈ Z;−π < ω j ≤ π} = {−⌊(n − 1)/2⌋, . . . , ⌊n/2⌋}. Here ⌊a⌋ is the largest integer less
than or equal to a. One of the reasons why the periodogram is regarded as an instrument to estimate
spectral density is that the periodogram is completely related to the sample autocovariance, γ̂x(k) for
|k| < n as follows:

Ix
n

(
ω j

)
=


n

∣∣∣∣∣∣∣1n
n∑

t=1

Xt

∣∣∣∣∣∣∣
2

, if ω j = 0,∑
|k|<n

γ̂x(k) exp
(
−ikω j

)
, otherwise.

(2.2)

From (2.1) and (2.2), (2π)−1Ix
n (ω j) is a nonparametric estimator of spectral density fx

(
ω j

)
for ω j , 0.

The raw (or unsmoothed) periodogram has the weakness of being asymptotically unbiased but
inconsistent. This means that the variance of a raw periodogram does not decrease as the sample size
n increases (Brockwell and Davis, 1991). A solution to this inconsistency is to smooth it. We apply a
lag window Wn(k) to the sample autocovariance to obtain a smoothed periodogram, i.e.,

f̂x
(
ω j

)
=

1
2π

M∑
k=−M

Wn(k)̂γx(k) exp
(
−ikω j

)
, (2.3)

where M is the truncation point that depends on the sample size n. The reader is referred to the
textbooks of Brockwell and Davis (1991), Brillinger (1981) and Priestley (1981) for their detailed
examination of lag window spectral density estimators.

Given a set of two stationary time-series sequences, x = {x1, . . . , xn} and y = {y1, . . . , yn}, the
comparison of the dissimilarity measures of x and y defined on the frequency domain is conducted by
Caiado et al. (2006). Before introducing the metrics in Caiado et al. (2006) and explaining the ones
based on the smoothed periodogram in (2.3), in order for the measures to be easily understood, we
express a metric, dA (x, y) as

dA (x, y) =

⌊n/2⌋∑
j=1

{
Ax

n
(
ω j

) − Ay
n
(
ω j

)}2


1/2

,
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where Ax
n(ω j), for example, is either a raw (or smoothed) periodogram or a transformed one at the

frequency ω j for the sequence x.
Caiado et al. (2006) proposed the following classification metrics: dI (x, y), dNI (x, y), dLNI (x, y).

These were compared with other metrics such as Euclidean distance, Piccolo’s distance (1990), ACF
distance and PACF distance. The metric, dLNI (x, y) is, for example, defined as

dLNI (x, y) =

⌊n/2⌋∑
j=1

{
ln NIx

n
(
ω j

) − ln NIy
n
(
ω j

)}2


1/2

,

where NIx
n (ω j) is the normalized periodogram of series x at the frequency of ω j. This means that it

is the raw periodogram, Ix
n (ω j) divided by sample variance, that is, NIx

n (ω j) = Ix
n (ω j)/̂γx(0). Caiado

et al. (2006) also proposed the Kullback-Leibler (K-L) information metric (see Kullback and Leibler,
1951; Kullback, 1978, for an introduction) defined as

dKL (x, y) =
⌊n/2⌋∑
j=1

[
NIx

n
(
ω j

)
NIy

n
(
ω j

) − ln
NIx

n
(
ω j

)
NIy

n
(
ω j

) − 1
]
.

Since dKL(x, y) , dKL(y, x), we use the following metric adjusting for asymmetry of K-L information
metric:

dKD (x, y) = dKL (x, y) + dKL (y, x) ,

where dKD (x, y) is called K-L divergence metric in this study.
The smoothed-periodogram based metrics proposed by Park and Kim (2008) are as follows;

d∗I (x, y), d∗NI (x, y), d∗LNI (x, y) and d∗KD (x, y), which are the counterparts of the corresponding met-
rics based on raw periodogram. The metric, d∗NI (x, y) is defined by

d∗NI (x, y) =

⌊n/2⌋∑
j=1

{
NĨx

n
(
ω j

) − NĨy
n
(
ω j

)}2


1/2

=

⌊n/2⌋∑
j=1

 Ĩx
n
(
ω j

)
γ̂x(0)

−
Ĩy
n
(
ω j

)
γ̂y(0)


2

1/2

,

where Ĩx
n (ω j) is defined as

Ĩx
n

(
ω j

)
=

M∑
k=−M

Wn(k)̂γx(k) exp
(
−ikω j

)
. (2.4)

Ĩx
n (ω j) is the spectral density estimator for the sequence x, f̂x(ω j) in (2.3) multiplied by 2π.

The lag window Wn(k) in (2.4) that is the best for this kind of clustering time-series data has not
been studied. As mentioned above, Park and Kim (2008) only considered a modified Daniell window
which is defined by

Wn(k) =



1
2(M − 1)

, if |k| = M,

1
M − 1

, if |k| < M,

0, if |k| > M.
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This lag window has equal weights except the first and the last. In this study, we used various lag
windows with unequal weights: Bohman, Bartlett, Parzen, rectangular, and Tukey-Hanning win-
dows. However, using rectangular window and Tukey-Hanning window may lead to negative values
of Ĩx

n (ω j) for some ω j, so d∗LNI (x, y) and d∗KD (x, y) are not obtained. In Section 3 and 4, we assay the
following three lag windows:

1. Bohman window

Wn(k) =


(
1 − |k|

M

)
cos

(
π
|k|
M

)
+

1
π

sin
(
π
|k|
M

)
, if |k| ≤ M,

0, if |k| > M.

2. Bartlett window

Wn(k) =

 1 − |k|
M
, if |k| ≤ M,

0, if |k| > M.

3. Parzen window

Wn(k) =



2
(
1 − |k|

M

)3

, if
M
2
≤ |k| ≤ M,

1 − 6
(
|k|
M

)2

+ 6
(
|k|
M

)3

, if |k| ≤ M
2
,

0, if |k| > M.

In this section, we reviewed some current dissimilarity measures proposed by Caiado et al. (2006),
and explained the metrics based on the smoothed periodogram and several lag windows with unequal
weights.

3. Simulation Studies

In this section, we examine the performance of the measures shown above for the classification of
time-series data under different simulation scenarios. In order to compare the raw-periodogram based
metrics with the smoothed-periodogram based ones, we first generated 12 time-series processes with
the preassigned parameter values listed in Table 1 under each scenario. Then we calculated raw
periodogram and smoothed periodograms with the three windows shown in Section 2.

Finally, we compute the metrics and conduct classification analysis using the complete linkage
hierarchical algorithm. In this section, we evaluate the performance of the dissimilarity measures by
means of the empirical probability of the correct classification. The sample sizes of 100, 200 and 500
are used for each simulation scenario and the number of Monte-Carlo simulations set to 1000. The
truncation point (or the width of a lag window), M for employing a lag window is set to 5%, 10% and
20% of the sample size. These are chosen based on the practical guidelines of Chatfield (1975, p.141).
We also considered the metrics based on autocorrelation functions(ACF) and partial autocorrelation
functions(PACF) respectively, defined as

dACF (x, y) =

√√√ L∑
l=1

(
ρ̂x

l − ρ̂
y
l

)2
and dPACF (x, y) =

√√√ L∑
l=1

(
ϕ̂x

ll − ϕ̂
y
ll

)2
,
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Table 1: The scenarios conducted in simulation studies.

Scenario Model Parameters
(p, d, q) Autoregressive (ϕ) Moving Average (θ)

1 (1, 0, 0) 0.10, 0.20, 0.40, 0.60, 0.80, 0.90
(0, 0, 1) 0.10, 0.20, 0.40, 0.60, 0.80, 0.90

2 (1, 0, 0) 0.40, 0.50, 0.60, 0.70, 0.80, 0.90
(0, 0, 1) 0.40, 0.50, 0.60, 0.70, 0.80, 0.90

3 (1, 0, 0) 0.80, 0.82, 0.84, 0.86, 0.88, 0.90
(1, 0, 0) 0.60, 0.62, 0.64, 0.66, 0.68, 0.70

4 (1, 0, 0) 0.65, 0.70, 0.75, 0.80, 0.85, 0.90
(1, 0, 0) 0.10, 0.15, 0.20, 0.25, 0.30, 0.35
(1, 0, 0) 0.90
(2, 0, 0) ϕ1 = 0.95, ϕ2 = −.10
(1, 0, 1) 0.95 0.10
(1, 0, 1) −.10 −.95
(0, 0, 1) −.90

5 (1, 0, 2) θ1 = −.95, θ2 = −.10
(1, 1, 0) 0.10
(0, 1, 0)
(0, 1, 1) 0.10
(0, 1, 1) −.10
(1, 1, 1) 0.10 −.10
(1, 1, 1) 0.05 −.05

Notes: 12 time-series models were generated for each scenario; Scenario 5 was considered by Caiado et al. (2006).

where {ρ̂l} are the sample autocorrelation coefficients and {ϕ̂ll} are the sample partial autocorrelation
coefficients. The number of lags, L is set to 25% of the sample size throughout Section 3 and 4. The
statistical program R (R Development Core Team, 2006) was used to conduct the simulation studies
and the real application.

Before explaining the simulation results, it may be more helpful to address the need for the clas-
sification of time-series data. Suppose we have moderate number of observed time-series processes.
Then it might not be difficult to analyze each of the processes by means of the time-domain approaches
and to make some reasonable clusters by comparing the parameter estimates. However, when many
processes are given, it is practically impossible to construct models one by one in order to classify
the data. That is why we focus on the time-series clustering based on the frequency domain, where
we can capture the underlying characteristics inherent in each of the processes in terms of a spectral
density function.

The simulation results are explained in Table 2, Table 3 and Table 4, each of which displays empir-
ical percentages of success in classifying the two true clusters of time-series models under certain sce-
nario, that is, how many times out of 1000 each measure divides the 12 time-series processes into the
two true clusters correctly. Before explaining the simulation results for each scenario we discuss some
general characteristics of the metrics considered in this study. Any smoothed-periodogram based met-
rics outperform the corresponding raw-periodogram based ones. Among the raw-periodogram based
metrics, the LNI metric is superior to the others and the performance of the LNI and the KD metrics
improves as n increases. Among the smoothed-periodogram based metrics, the LNI or the KD met-
rics can be regarded as the best and their empirical percentages are also proportional to n except for
Scenario 1 for the KD metric. When stationary time-series models are considered, the performance
of the smoothed-periodogram based metrics under Bartlett window is mostly inversely-proportional
to M and the performance of the smoothed NI metric worsens as M increases for any lag windows.
The PACF metric is much better than the ACF one. Under Scenario 5 (where the stationary and the
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Table 2: Empirical percentages of success on the classification under Scenarios 1 and 2
Smoothed periodogram Correlation

n metric Raw† Bohman window Bartlett window Parzen window ACF PACF
5% 10% 20% 5% 10% 20% 5% 10% 20%

I 0.0 0.0 0.1 0.0 0.0 0.2 0.0 0.1 0.1 0.0 2.3 20.8

100 NI 0.8 21.8 10.6 5.1 15.4 9.4 6.0 22.3 11.9 5.8
LNI 7.1 8.6 10.6 11.6 17.4 15.2 13.3 8.3 11.4 11.2
KD 4.3 8.4 11.7 10.9 17.3 15.8 14.3 7.6 11.9 11.4

I 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.5 24.7

1 200 NI 0.0 11.3 2.0 1.0 5.6 2.4 1.5 12.8 2.4 1.2
LNI 7.6 15.4 14.7 14.3 17.9 18.3 18.0 15.0 15.1 14.8
KD 4.2 16.9 13.8 10.1 22.1 22.4 17.7 17.8 14.3 11.1

I 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 30.5

500 NI 0.0 0.2 0.0 0.0 0.2 0.1 0.0 0.1 0.0 0.0
LNI 9.9 17.8 16.6 15.7 19.1 18.0 17.3 17.1 16.9 16.0
KD 4.2 10.4 6.3 6.1 20.5 16.6 11.3 10.8 6.8 6.3

I 0.7 5.9 3.4 2.5 3.5 2.8 2.8 5.9 3.6 2.5 26.0 98.2

100 NI 14.7 98.5 87.9 65.2 95.8 82.8 67.6 98.5 91.9 68.7
LNI 86.5 92.6 93.9 95.0 98.4 97.5 96.7 91.8 93.5 94.7
KD 41.1 92.4 96.1 97.0 98.7 98.2 97.7 90.6 95.7 97.3

I 0.0 0.8 0.3 0.3 0.4 0.3 0.4 0.9 0.3 0.4 16.9 99.9

2 200 NI 8.0 92.5 58.6 35.9 82.9 57.9 39.5 94.5 62.9 37.6
LNI 96.5 97.7 98.7 99.2 99.3 99.2 99.2 97.6 98.9 99.2
KD 57.6 99.4 99.3 99.3 99.7 99.7 99.8 99.3 99.4 99.4

I 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 9.0 100.0

500 NI 1.9 44.4 23.7 17.1 43.1 27.9 19.6 48.4 24.4 17.3
LNI 99.6 99.8 100.0 99.9 100.0 100.0 100.0 99.8 100.0 100.0
KD 62.5 100.0 99.8 99.6 100.0 100.0 100.0 100.0 99.8 99.5

Notes: n is the sample size; Raw† denotes the raw periodogram; ACF denotes the autocorrelation;
PACF denotes the partial autocorrelation.

nonstationary models are considered) the LNI and the KD metrics with Bohman or Parzen windows
perform the best and the ACF metric is superior to the PACF one.

The simulation results under the first two scenarios are displayed in Table 2. First, when the
AR processes and the MA ones are considered (Scenario 1 and 2), any smoothed-periodogram based
metrics outperform raw-periodogram based ones except for the I metrics, whose percentages are too
low to compare to each other. Now we give a full detail of the results from Scenario 1. The NI metric
with Parzen (or Bohman) window and M = 5% is superior to the others when n = 100, whereas the
LNI or the KD metrics with Bartlett window and M = 5% or 10% perform the best when n ≥ 200. The
performance of any smoothed-periodogram based metrics largely depends on M. As M decreases, that
is, as a periodogram becomes smoothed, any smoothed-periodogram based metric tends to classify
the true clusters more correctly especially when n ≥ 200. For the correlation-based metrics, the PACF
metric splits the generated processes into the two true clusters much better than the ACF one, and
its performance becomes remarkable as n increases. The smoothed NI metric for n = 100 and the
PACF metric for n ≥ 200 are the best among all the metrics considered. Overall performances under
Scenario 1 are not quite good in that it is not practically easy to discriminate between the AR process
with ϕ = 0.10 and the MA one with θ = 0.10. This can be easily found from Figure 1(a).

We now discuss the results of Scenario 2, under which, as shown in Figure 1(b), the two clusters
are more separable. The smoothed-periodogram metrics also perform better in the classification than
the raw-periodogram based ones. when n = 500, the raw LNI metric and the smoothed LNI one have
similar performance. There is remarkable improvement in the performance of the smoothed NI metric
compared to the raw NI one. The NI metric with M = 5%, and the LNI or the KD metrics correctly
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Figure 1: Plots of the theoretical spectral densities under Scenarios 1–4. Notes: y-axis is the logarithm of the
normalized spectral densities and x-axis is the frequency with range of (0, π); solid lines are for the first six

models and dashed lines for the other six models listed in Table 1.

classify the stationary processes at least with 90% even when n = 100. The PACF metric performs as
well as the smoothed NI metric when n = 100 and the smoothed LNI (or KD) metric when n ≥ 200.

We also compared the empirical percentages of successful classification under Scenarios 3 and
4 (Table 3), where the two true clusters consist of the AR processes with high parameter values and
another AR ones with relatively low values. First of all, the smoothed-periodogram based metrics
outperform the raw-periodogram based ones regardless of the type of lag window, smoothing rate,
and sample size. The smoothed-periodogram based metrics perform even better than the correlation-
based metrics under Scenario 3. In terms of Scenario 4, the PACF metric is slightly better than the
LNI metric with Bartlett window and M = 5% only when n = 500. The correct classification is more
likely to take place under Scenario 4 than under Scenario 5 in that the distinction of the theoretical
spectral densities of the two clusters is more remarkable in case of Scenario 4 (Figure 1(d)).

In general, stationarity assumption only allows to the definition of spectral density, but we can
apply our approach to integrated processes due to Pẽna and Poncela (2006). Scenario 5 considered
by Caiado et al. (2006) focuses on the comparison of the classification metrics under the two clusters
of the stationary and the nonstationary time-series models. In general, the stationarity is a quite
explicit definition while the nonstationarity is not. That is, if a process does not satisfy the stationarity
assumption, then it is simply regarded as nonstationary although we have no idea of the type of
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Table 3: Empirical percentages of success on the classification under Scenarios 3 and 4
Smoothed periodogram Correlation

n metric Raw† Bohman window Bartlett window Parzen window ACF PACF
5% 10% 20% 5% 10% 20% 5% 10% 20%

I 0.1 3.9 3.4 2.7 3.6 3.2 2.3 4.1 3.7 2.9 2.0 0.7

100 NI 0.2 14.0 11.4 6.7 12.9 8.3 5.6 13.8 12.1 7.3
LNI 2.6 12.5 12.0 11.3 13.5 14.2 12.0 13.0 12.2 11.5
KD 0.6 12.5 11.6 11.5 13.7 13.8 12.5 13.0 11.8 11.6

I 0.0 9.5 8.4 6.4 8.5 8.4 6.2 9.6 8.3 7.0 2.7 2.3

3 200 NI 0.4 29.9 21.2 14.0 25.3 18.3 13.7 30.3 22.8 15.1
LNI 13.1 32.9 33.4 31.3 36.8 35.0 34.3 32.9 33.2 31.5
KD 2.0 32.4 33.3 31.0 36.9 35.2 33.7 32.8 33.3 31.0

I 0.0 12.1 10.0 8.1 11.2 9.3 6.7 12.0 10.3 8.2 3.3 7.7

500 NI 0.1 46.9 34.5 24.2 42.6 33.5 22.7 47.8 36.2 24.7
LNI 38.5 60.4 60.8 60.7 65.3 63.3 61.2 60.6 60.8 61.1
KD 2.9 60.6 60.9 60.2 65.3 63.5 61.0 60.6 61.0 60.4

I 0.1 6.0 4.6 2.5 5.2 3.5 2.7 6.0 4.7 3.0 10.4 53.7

100 NI 2.3 70.9 62.0 44.0 67.5 55.0 42.0 71.6 62.7 46.6
LNI 30.6 61.8 58.2 56.8 68.7 64.8 63.8 62.0 59.3 56.9
KD 7.3 61.2 58.4 56.6 68.6 65.0 64.8 60.9 58.4 57.2

I 0.0 2.0 1.1 1.1 1.3 0.9 0.9 2.1 1.0 1.1 7.5 79.7

4 200 NI 0.5 79.6 54.8 34.7 69.8 49.0 33.5 82.2 58.0 35.2
LNI 51.0 71.3 70.3 68.1 81.7 78.8 74.3 71.8 70.1 68.3
KD 12.2 71.6 71.4 69.7 82.1 79.6 76.0 71.9 71.2 69.9

I 0.0 0.1 0.1 0.0 0.0 0.1 0.1 0.1 0.1 0.0 2.7 95.0

500 NI 0.0 55.4 33.0 24.0 48.5 33.9 23.5 58.4 34.3 24.2
LNI 72.1 80.8 79.1 79.4 90.6 86.7 84.8 80.6 79.2 78.7
KD 20.2 82.3 81.3 81.8 91.2 87.9 86.9 82.5 81.2 81.0

Notes: n is the sample size; Raw† denotes the raw periodogram; ACF denotes the autocorrelation;
PACF denotes the partial autocorrelation.

nonstationarity inherent in its features. We examined the performance of the metrics in terms of the
following two viewpoints: how many times the two true clusters are classified correctly by each of
the metrics (traditional clustering rule) and how many times the stationary or the nonstationary time-
series processes are purely combined first by each of the metrics. For the rest of this work, we call the
two viewpoints “From Top” direction and “From Bottom” direction, respectively.

For ease of understanding, we illustrate the two viewpoints with Figure 2, where the dendrogram
plots of two groups of simulated processes are displayed. Suppose that Group A (or B) consists of six
processes, A1 through A6 (or B1 through B6). Then Figure 2(a) is for the case where the two groups
are not properly classified since, for instance, B1 prior to A4 was combined with the other members of
Group A. As can be seen from Figure 2(b), Group A was purely clustered first before other members
of Group B are merged into the group; the classification result is acceptable in terms of the “From
Bottom” direction. Figure 2(c) is the ideal situation where the two groups are combined with their
own members first according to the “From Bottom” direction, and, consequently, the whole processes
are properly split into the two true groups according to the “From Top” direction. In this scenario, we
take the “From Bottom” direction along with the “From Top” direction into account.

We now explain the results of Scenario 5 shown in Table 4 in terms of the two viewpoints. In
terms of the traditional classification rule (“From Top” direction), the LNI metric performs the best
among the raw-periodogram based ones. Among the smoothed-periodogram based metrics, the LNI
and the KD metrics with Bohman or Parzen windows are the best. Of interest here is the contrast with
the previous scenarios, any smoothed metrics with M = 5% are not always the best and the smoothed
LNI metric performs worse than the raw LNI metric in some situations. Among the correlation-based
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Figure 2: Dendrogram plots of simulated time-series.

Table 4: Empirical percentages of success on the classification under Scenario 5
Smoothed periodogram Correlation

n metric Raw† Bohman window Bartlett window Parzen window ACF PACF
5% 10% 20% 5% 10% 20% 5% 10% 20%

I 0.1 0.3 0.5 0.3 0.3 0.4 0.2 0.3 0.5 0.3 4.2 0.0

100 NI 2.2 0.0 0.0 2.3 0.0 0.6 3.3 0.0 0.0 1.9
LNI 1.7 5.1 5.5 6.1 3.4 2.8 3.2 4.8 5.6 6.0
KD 1.2 5.1 5.1 5.5 3.7 2.8 2.7 4.7 5.4 5.6

I 0.5 2.7 2.0 2.2 2.4 2.0 1.9 2.7 2.0 2.3 12.3 0.0

T 200 NI 8.4 0.0 1.7 11.7 0.0 6.4 14.7 0.0 0.9 11.3
LNI 15.3 24.2 26.3 26.3 9.8 9.6 13.4 24.0 25.8 26.2
KD 6.7 23.5 25.0 25.1 12.0 9.0 11.4 23.5 24.8 24.8

I 0.4 2.6 2.0 1.5 2.5 1.8 1.3 2.7 2.1 1.7 32.7 0.0

500 NI 19.8 2.4 44.7 54.9 19.6 53.0 53.8 1.0 40.9 55.3
LNI 66.7 72.8 72.4 72.3 40.5 56.6 70.0 72.8 72.8 72.4
KD 36.6 71.8 71.2 71.5 45.0 50.2 62.6 72.1 71.4 71.3

I 16.6 13.4 13.0 13.7 13.2 13.2 13.7 13.4 13.2 13.6 10.4 53.7

100 NI 3.1 11.1 9.4 9.3 10.0 9.5 8.2 11.3 9.7 9.4
LNI 4.1 8.0 7.7 8.2 7.8 8.5 9.1 8.1 7.8 8.3
KD 2.8 8.0 7.6 8.0 7.8 8.0 9.1 7.9 7.8 8.2

I 54.9 46.2 46.3 46.3 46.4 46.5 46.5 46.0 46.2 46.1 5.1 2.4

B 200 NI 15.7 32.5 29.1 23.3 30.2 26.3 20.7 33.1 29.3 23.9
LNI 22.3 31.2 30.4 29.3 30.5 33.5 35.3 31.5 30.3 29.3
KD 12.4 31.2 30.3 29.6 29.9 33.0 34.8 31.2 30.3 29.5

I 95.4 89.2 89.4 90.2 89.3 89.2 90.5 89.1 89.4 90.1 57.8 11.9

500 NI 57.8 74.8 70.1 61.8 72.6 65.4 57.9 75.2 70.8 62.6
LNI 69.2 73.5 72.8 72.6 75.7 78.6 77.5 73.7 73.2 72.7
KD 53.6 72.8 72.2 72.7 75.4 78.2 77.5 73.2 72.4 72.5

Notes: T denotes “From Top” direction; B denotes “From Bottom” direction; n is the sample size; Raw† denotes
the raw periodogram; ACF denotes the autocorrelation; PACF denotes the partial autocorrelation.

metrics, the ACF metric outperforms the PACF one, unlike the results from Scenarios 1 through 4. In
terms of the second viewpoint (“From Bottom” direction), whether or not the I metric is smoothed,
they yield the best performances irrespective of n. Since Figure 2(c) is a special case of Figure 2(b),
the phenomenon illustrated in Figure 2(b) occurs quite often to the I metrics. However, the smoothed
LNI and the smoothed KD metrics with Bohman or Parzen windows have insignificant differences
between the percentages based on the two viewpoints. The differences are nearly 1% when n = 500.
Overall comparison forms the conclusion that the LNI or KD metrics with Bohman or Parzen windows
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Figure 3: Dendrogram plots of differenced log series of individual production indices in US by using the
smoothed LNI metric under Bartlett window with 5% truncation points.

tend to split the data into the true clusters much better.
In this section, we conducted various simulation scenarios in order to evaluate the classification

metrics. The NI metric with Bohman or Parzen window, and the LNI or KD metrics with Bartlett
window are preferred to classify stationary time-series models. However, the correct classification
can be done by the LNI or KD metrics with Bohman or Parzen windows when the nonstationary
models are also to be considered.

4. Real Application

In this section, we apply the classification metrics shown above to real data, which were analyzed in
Caiado et al. (2006). We use the Industrial Production (by Market Group) indices in the United States
(source: http://www.economagic.com). The data contain seasonally adjusted time-series indices, each
of which are monthly measurements from January 1997 to September 2002 (n = 309). In order to
try direct comparison with the clustering outcomes shown Caiado et al. (2006), we also transformed
each time-series sequence, {xt} into its differences of the logarithm, {ln xt − ln xt−1} to stabilize the
variations and remove the linear trend. For the time plots of differenced log series of 12 industrial
production indices, see Caiado et al. (2006).

Figure 3 displays the dendrogram resulting from the complete linkage classification method of the
series using the smoothed LNI metric under Bartlett window with the 5% truncation point, which has
the best performance from Section 3. We used Goodman and Kruskal’s Gamma coefficient (Baker
and Hubert, 1975), which is an index of association between the clustering levels and the dissimilarity
metrics, to avoid the subjective choice of the number of clusters based on the real data. The gamma
value recommended two clusters in the data as the best hierarchy level. The determined clusters are
as follows: C1 = {1, 2, 3, 4, 10, 12, 13, 15, 19} and C2 = {5, 6, 7, 8, 9, 11, 14, 16, 17, 18, 20}. When
we consider three clusters, Cluster C1 is divided into two groups: C11 = {1, 2, 4, 10} and C12 =

{3, 12, 13, 15, 19}. When applying the smoothed KD metric under the same window with the same



388 Hee-Young Kim, Man Sik Park

−
2.

11
4

0.
00

0
2.

11
4

1.Manufacturing

−
2.

11
4

0.
00

0
2.

11
4

2.Primary processing

−
2.

11
4

0.
00

0
2.

11
4

3.Advanced
processing

−
2.

11
4

0.
00

0
2.

11
4

4.Durable
manufacturing

−
2.

11
4

0.
00

0
2.

11
4

5.Lumber & products

−
2.

11
4

0.
00

0
2.

11
4

6.Furniture & products

−
2.

11
4

0.
00

0
2.

11
4

7.Stone, clay,
& glass products

−
2.

11
4

0.
00

0
2.

11
4

8.Primary metals

−
2.

11
4

0.
00

0
2.

11
4

9.Iron & steel

−
2.

11
4

0.
00

0
2.

11
4

10.Raw steel

−
2.

11
4

0.
00

0
2.

11
4

11.Non−ferrous metals

−
2.

11
4

0.
00

0
2.

11
4

12.Fabricated metal
products

−
2.

11
4

0.
00

0
2.

11
4

13.Industrial machinery
& equipment

−
2.

11
4

0.
00

0
2.

11
4

14.Computer & office
equipment

−
2.

11
4

0.
00

0
2.

11
4

15.Electrical
machinery

−
2.

11
4

0.
00

0
2.

11
4

16.Transportation
equipment

−
2.

11
4

0.
00

0
2.

11
4

17.Motor vehicles
& parts

−
2.

11
4

0.
00

0
2.

11
4

18.Autos
& light trucks

−
2.

11
4

0.
00

0
2.

11
4

19.Aerospace & miscell.
transp. equip.

−
2.

11
4

0.
00

0
2.

11
4

20.Instruments

Figure 4: Plots of logarithm of the normalized smoothed periodograms under Bartlett window. Notes: the thin
lines are for 20% truncation points and the thick lines for 5% truncation points.

level of truncation points, we obtained the same classification result.
We explain the characteristics of the clusters with the logarithm of the normalized smoothed peri-

odograms illustrated in Figure 4. The indices in Cluster C1 have large density for very low frequencies
compared to high frequencies. Their densities rapidly decrease in the low-frequency region, (0, π/3)
except Index 10 (Raw steel). Conversely, Cluster C2 includes the indices in which the densities for low
frequencies are not so large as to dominate over all the region or the peaks in the high-frequency re-
gion, (2π/3, π]. The two groups, C11 and C12 consisting of Cluster C1 are different in that the densities
of the indices in C12 tend to increase outside the low-frequency region.

It is unreasonable to compare the clustering results based on different dissimilarity metrics, but we
briefly describe our classification result against Caiado et al. (2006), where the raw LNI metric split
the indices into the following three clusters: G1 = {1, 2, 3, 4, 6, 7, 12, 13, 14, 19, 20}, G2 = {8, 9, 10}
and G3 = {5, 11, 16, 17, 18}. Clusters G1 and C1 are similar except the indices, {6, 7, 10, 14, 15, 20}.
Index 15 (Electrical machinery) is isolated from the three clusters in Caiado et al. (2006). G3 is
included in C2 and the indices {16, 17, 18} are more homogeneous than the others in the same cluster
from Figure 3. These indices turned out to be white noise when applying Box-Jenkins models, though
the results are not listed in this study.

5. Conclusion

In this study, we reviewed the dissimilarity metrics based on the smoothed periodogram proposed in
Park and Kim (2008) and considered several lag windows with unequal weights: Bohman, Bartlett
and Parzen windows. We compared the smoothed-periodogram based metrics having the lag win-
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dows with the raw-periodogram based ones via simulation. We applied them to the monthly Indus-
trial Production Indices in the United States. The main contribution of the proposed metrics for the
classification is that we showed the superiority of the smoothed-periodogram based metrics over the
raw-periodogram based ones, in terms of the empirical percentages of success on the classification.
One of the reasons is that smoothing the raw periodogram with any lag windows improves the stability
of estimation of the spectral density and better captures the underlying characteristics.

Performance of the smoothed-periodogram based metrics is influenced by the type of lag windows.
This is an avenue for further research. We can also extend this research to compare autoregressive
conditional heteroscedasticity(ARCH) and generalized ARCH(GARCH) models by using transfor-
mations of a periodogram.
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