• Title/Summary/Keyword: nonparametric Bayesian

Search Result 52, Processing Time 0.023 seconds

Bayesian Model based Korean Semantic Role Induction (베이지안 모형 기반 한국어 의미역 유도)

  • Won, Yousung;Lee, Woochul;Kim, Hyungjun;Lee, Yeonsoo
    • 한국어정보학회:학술대회논문집
    • /
    • 2016.10a
    • /
    • pp.111-116
    • /
    • 2016
  • 의미역은 자연어 문장의 서술어와 관련된 논항의 역할을 설명하는 것으로, 주어진 서술어에 대한 논항인식(Argument Identification) 및 분류(Argument Labeling)의 과정을 거쳐 의미역 결정(Semantic Role Labeling)이 이루어진다. 이를 위해서는 격틀 사전을 이용한 방법이나 말뭉치를 이용한 지도 학습(Supervised Learning) 방법이 주를 이루고 있다. 이때, 격틀 사전 또는 의미역 주석 정보가 부착된 말뭉치를 구축하는 것은 필수적이지만, 이러한 노력을 최소화하기 위해 본 논문에서는 비모수적 베이지안 모델(Nonparametric Bayesian Model)을 기반으로 서술어에 가능한 의미역을 추론하는 비지도 학습(Unsupervised Learning)을 수행한다.

  • PDF

Characterization and modeling of a self-sensing MR damper under harmonic loading

  • Chen, Z.H.;Ni, Y.Q.;Or, S.W.
    • Smart Structures and Systems
    • /
    • v.15 no.4
    • /
    • pp.1103-1120
    • /
    • 2015
  • A self-sensing magnetorheological (MR) damper with embedded piezoelectric force sensor has recently been devised to facilitate real-time close-looped control of structural vibration in a simple and reliable manner. The development and characterization of the self-sensing MR damper are presented based on experimental work, which demonstrates its reliable force sensing and controllable damping capabilities. With the use of experimental data acquired under harmonic loading, a nonparametric dynamic model is formulated to portray the nonlinear behaviors of the self-sensing MR damper based on NARX modeling and neural network techniques. The Bayesian regularization is adopted in the network training procedure to eschew overfitting problem and enhance generalization. Verification results indicate that the developed NARX network model accurately describes the forward dynamics of the self-sensing MR damper and has superior prediction performance and generalization capability over a Bouc-Wen parametric model.

Bayesian Model based Korean Semantic Role Induction (베이지안 모형 기반 한국어 의미역 유도)

  • Won, Yousung;Lee, Woochul;Kim, Hyungjun;Lee, Yeonsoo
    • Annual Conference on Human and Language Technology
    • /
    • 2016.10a
    • /
    • pp.111-116
    • /
    • 2016
  • 의미역은 자연어 문장의 서술어와 관련된 논항의 역할을 설명하는 것으로, 주어진 서술어에 대한 논항 인식(Argument Identification) 및 분류(Argument Labeling)의 과정을 거쳐 의미역 결정(Semantic Role Labeling)이 이루어진다. 이를 위해서는 격틀 사전을 이용한 방법이나 말뭉치를 이용한 지도 학습(Supervised Learning) 방법이 주를 이루고 있다. 이때, 격틀 사전 또는 의미역 주석 정보가 부착된 말뭉치를 구축하는 것은 필수적이지만, 이러한 노력을 최소화하기 위해 본 논문에서는 비모수적 베이지안 모델(Nonparametric Bayesian Model)을 기반으로 서술어에 가능한 의미역을 추론하는 비지도 학습(Unsupervised Learning)을 수행한다.

  • PDF

Clinical Pharmacokinetics of Gentamicin in Appendicitis Patients (충수돌기염 환자에서 겐타마이신의 임상약물동태)

  • Cho Jun-Shik;Jung HaeGwang;Burm Jin Pil;Lee JinHwan;Kim SungHwan
    • Korean Journal of Clinical Pharmacy
    • /
    • v.5 no.2
    • /
    • pp.1-12
    • /
    • 1995
  • The purpose of this investigation was to determine pharmacokinetic parameters of gentamicin using linear least square regression(LLSR) and Bayesian analysis in Korean normal volunteers and appendicitis patients. Nonparametric expected maximum(NPEM) algorithm for population pharmacokinetic parameters was used. Gentamicin was administered every 8 hours for 3 days by infusion over 30 minutes. The volume of distribution(V) and elimination rate constant(K) of gentamicin were $0.215\pm0.0562,\;0.226\pm0.0325L/kg\;and\;0.339\pm0.0443,\;0.357\pm0.0243hr^{-1}$ for normal volunteers and appendicitis patients using LLSR analysis. Population pharmacokinetic parameters, VS and KS were $0.228\pm0.0614L/kg\;and\;0.00356\pm0.00041(hr{\cdot}mL/min/1.73m^2)^{-1}$ for appendicitis patients using NPEM algorithm. The V and K were $0.232\pm0.0568L/kg\;and\;0.337\pm0.0385hr^{-1}$ for appendicitis patients using Bayesian analysis. There were no differences in gentamicin pharmacokinetics between LLSR and Bayesian analysis.

  • PDF

Grid-based Gaussian process models for longitudinal genetic data

  • Chung, Wonil
    • Communications for Statistical Applications and Methods
    • /
    • v.29 no.1
    • /
    • pp.65-83
    • /
    • 2022
  • Although various statistical methods have been developed to map time-dependent genetic factors, most identified genetic variants can explain only a small portion of the estimated genetic variation in longitudinal traits. Gene-gene and gene-time/environment interactions are known to be important putative sources of the missing heritability. However, mapping epistatic gene-gene interactions is extremely difficult due to the very large parameter spaces for models containing such interactions. In this paper, we develop a Gaussian process (GP) based nonparametric Bayesian variable selection method for longitudinal data. It maps multiple genetic markers without restricting to pairwise interactions. Rather than modeling each main and interaction term explicitly, the GP model measures the importance of each marker, regardless of whether it is mostly due to a main effect or some interaction effect(s), via an unspecified function. To improve the flexibility of the GP model, we propose a novel grid-based method for the within-subject dependence structure. The proposed method can accurately approximate complex covariance structures. The dimension of the covariance matrix depends only on the number of fixed grid points although each subject may have different numbers of measurements at different time points. The deviance information criterion (DIC) and the Bayesian predictive information criterion (BPIC) are proposed for selecting an optimal number of grid points. To efficiently draw posterior samples, we combine a hybrid Monte Carlo method with a partially collapsed Gibbs (PCG) sampler. We apply the proposed GP model to a mouse dataset on age-related body weight.

A pooled Bayes test of independence using restricted pooling model for contingency tables from small areas

  • Jo, Aejeong;Kim, Dal Ho
    • Communications for Statistical Applications and Methods
    • /
    • v.29 no.5
    • /
    • pp.547-559
    • /
    • 2022
  • For a chi-squared test, which is a statistical method used to test the independence of a contingency table of two factors, the expected frequency of each cell must be greater than 5. The percentage of cells with an expected frequency below 5 must be less than 20% of all cells. However, there are many cases in which the regional expected frequency is below 5 in general small area studies. Even in large-scale surveys, it is difficult to forecast the expected frequency to be greater than 5 when there is small area estimation with subgroup analysis. Another statistical method to test independence is to use the Bayes factor, but since there is a high ratio of data dependency due to the nature of the Bayesian approach, the low expected frequency tends to decrease the precision of the test results. To overcome these limitations, we will borrow information from areas with similar characteristics and pool the data statistically to propose a pooled Bayes test of independence in target areas. Jo et al. (2021) suggested hierarchical Bayesian pooling models for small area estimation of categorical data, and we will introduce the pooled Bayes factors calculated by expanding their restricted pooling model. We applied the pooled Bayes factors using bone mineral density and body mass index data from the Third National Health and Nutrition Examination Survey conducted in the United States and compared them with chi-squared tests often used in tests of independence.

Density estimation of summer extreme temperature over South Korea using mixtures of conditional autoregressive species sampling model (혼합 조건부 종추출모형을 이용한 여름철 한국지역 극한기온의 위치별 밀도함수 추정)

  • Jo, Seongil;Lee, Jaeyong
    • Journal of the Korean Data and Information Science Society
    • /
    • v.27 no.5
    • /
    • pp.1155-1168
    • /
    • 2016
  • This paper considers a probability density estimation problem of climate values. In particular, we focus on estimating probability densities of summer extreme temperature over South Korea. It is known that the probability density of climate values at one location is similar to those at near by locations and one doesn't follow well known parametric distributions. To accommodate these properties, we use a mixture of conditional autoregressive species sampling model, which is a nonparametric Bayesian model with a spatial dependency. We apply the model to a dataset consisting of summer maximum temperature and minimum temperature over South Korea. The dataset is obtained from University of East Anglia.

Noise reduction algorithm for an image using nonparametric Bayesian method (비모수 베이지안 방법을 이용한 영상 잡음 제거 알고리즘)

  • Woo, Ho-young;Kim, Yeong-hwa
    • The Korean Journal of Applied Statistics
    • /
    • v.31 no.5
    • /
    • pp.555-572
    • /
    • 2018
  • Noise reduction processes that reduce or eliminate noise (caused by a variety of reasons) in noise contaminated image is an important theme in image processing fields. Many studies are being conducted on noise removal processes due to the importance of distinguishing between noise added to a pure image and the unique characteristics of original images. Adaptive filter and sigma filter are typical noise reduction filters used to reduce or eliminate noise; however, their effectiveness is affected by accurate noise estimation. This study generates a distribution of noise contaminating image based on a Dirichlet normal mixture model and presents a Bayesian approach to distinguish the characteristics of an image against the noise. In particular, to distinguish the distribution of noise from the distribution of characteristics, we suggest algorithms to develop a Bayesian inference and remove noise included in an image.

Population Pharmacokinetics for Gentamicin in American and Korean-American Appendicitis Patients Using Nonparametric Expected Maximum(NPEM) Algorithm (비모수적 기대최대치(NPEM)연산방법에 의한 미국인과 재미동포 충수돌기염 환자에게 겐타마이신의 모집단 약물동태학)

  • ;;Stanford Jhee;Gill, Mark A.
    • YAKHAK HOEJI
    • /
    • v.39 no.2
    • /
    • pp.103-112
    • /
    • 1995
  • Population pharmacokinetics for gentamicin were compared with 24 American patients (16 male and 8 female) and 16 Korean-American appendicitis patients(12 male and 4 female). Two to six blood specimens were collected from all patients at the following times: just before a regularly scheduled infusion and at 1/2 hour after the end of a 1/2 hour infusion. Nonparametric expected maximum(NPEM) algorithm for population modeling was used. The estimated parameters were the elimination rate constant(K), the slope of the relationship between K versus creatinine clearance(KS), the apparent volume of distribution(V), the slope of the relationship between V versus weight(VS), gentamicin clearance(CL) and the slope of the relationship between CL versus creatinine clearance and the VS(CS). The output includes a 3-dimensional plot of the joint probability density function(PDF), two marginal PDF, means, medians, modes, variance, skewness, kurtosis, and CV%. The mean K(KS) were 0.424$\pm$0.139(0.00429$\pm$0.00164) and 0.411$\pm$0.135 hr$^{-1}$ (0.00475$\pm$0.00180[hr.mL/min/1.73m$^{2}]^{-1}$) for American and Korean-American populations, respectively. The mean V(VS) were not different at 15.6$\pm$4.77(0.233$\pm$0.0526) and 15.1$\pm$3.84L(0.239$\pm$0.0492 L/kg) for American and Korean-American populations, respectively (P>0.2). The mean CL (CS) were 6.28$\pm$1.85(0.0634$\pm$0.0191) and 5.70$\pm$1.77 L/hr(0.0701$\pm$0.0215 L/kg[hr.mL/min/1.73m$^{2}$)] for American and Korean-American populations, respectively. There are no differences in gentamicin pharmacokinetics between American and Korean-American Appendicitis patients.

  • PDF

Estimation of Interaction Effects among Nucleotide Sequence Variants in Animal Genomes

  • Lee, Chaeyoung;Kim, Younyoung
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.22 no.1
    • /
    • pp.124-130
    • /
    • 2009
  • Estimating genetic interaction effects in animal genomics would be one of the most challenging studies because the phenotypic variation for economically important traits might be largely explained by interaction effects among multiple nucleotide sequence variants under various environmental exposures. Genetic improvement of economic animals would be expected by understanding multi-locus genetic interaction effects associated with economic traits. Most analyses in animal breeding and genetics, however, have excluded the possibility of genetic interaction effects in their analytical models. This review discusses a historical estimation of the genetic interaction and difficulties in analyzing the interaction effects. Furthermore, two recently developed methods for assessing genetic interactions are introduced to animal genomics. One is the restricted partition method, as a nonparametric grouping-based approach, that iteratively utilizes grouping of genotypes with the smallest difference into a new group, and the other is the Bayesian method that draws inferences about the genetic interaction effects based on their marginal posterior distributions and attains the marginalization of the joint posterior distribution through Gibbs sampling as a Markov chain Monte Carlo. Further developing appropriate and efficient methods for assessing genetic interactions would be urgent to achieve accurate understanding of genetic architecture for complex traits of economic animals.