• 제목/요약/키워드: nonlocal effects

검색결과 284건 처리시간 0.023초

Nonlocal buckling characteristics of heterogeneous plates subjected to various loadings

  • Ebrahimi, Farzad;Babaei, Ramin;Shaghaghi, Gholam Reza
    • Advances in aircraft and spacecraft science
    • /
    • 제5권5호
    • /
    • pp.515-531
    • /
    • 2018
  • In this manuscript, buckling response of the functionally graded material (FGM) nanoplate is investigated. Two opposite edges of nanoplate is under linear and nonlinear varying normal stresses. The small-scale effect is considered by Eringen's nonlocal theory. Governing equation are derived by nonlocal theory and Hamilton's principle. Navier's method is used to solve governing equation in simply boundary conditions. The obtained results exactly match the available results in the literature. The results of this research show the important role of nonlocal effect in buckling and stability behavior of nanoplates. In order to study the FG-index effect and different loading condition effects on buckling of rectangular nanoplate, Navier's method is applied and results are presented in various figures and tables.

Modal analysis of viscoelastic nanorods under an axially harmonic load

  • Akbas, Seref D.
    • Advances in nano research
    • /
    • 제8권4호
    • /
    • pp.277-282
    • /
    • 2020
  • Axially damped forced vibration responses of viscoelastic nanorods are investigated within the frame of the modal analysis. The nonlocal elasticity theory is used in the constitutive relation of the nanorod with the Kelvin-Voigt viscoelastic model. In the forced vibration problem, a cantilever nanorod subjected to a harmonic load at the free end of the nanorod is considered in the numerical examples. By using the modal technique, the modal expressions of the viscoelastic nanorods are presented and solved exactly in the nonlocal elasticity theory. In the numerical results, the effects of the nonlocal parameter, damping coefficient, geometry and dynamic load parameters on the dynamic responses of the viscoelastic nanobem are presented and discussed. In addition, the difference between the nonlocal theory and classical theory is investigated for the damped forced vibration problem.

On bending, buckling and vibration of graphene nanosheets based on the nonlocal theory

  • Liu, Jinjian;Chen, Ling;Xie, Feng;Fan, Xueliang;Li, Cheng
    • Smart Structures and Systems
    • /
    • 제17권2호
    • /
    • pp.257-274
    • /
    • 2016
  • The nonlocal static bending, buckling, free and forced vibrations of graphene nanosheets are examined based on the Kirchhoff plate theory and Taylor expansion approach. The nonlocal nanoplate model incorporates the length scale parameter which can capture the small scale effect. The governing equations are derived using Hamilton's principle and the Navier-type solution is developed for simply-supported graphene nanosheets. The analytical results are proposed for deflection, natural frequency, amplitude of forced vibration and buckling load. Moreover, the effects of nonlocal parameter, half wave number and three-dimensional sizes on the static, dynamic and stability responses of the graphene nanosheets are discussed. Some illustrative examples are also addressed to verify the present model, methodology and solution. The results show that the new nanoplate model produces larger deflection, smaller circular frequencies, amplitude and buckling load compared with the classical model.

Reflection and refraction of plane waves in layered nonlocal elastic and anisotropic thermoelastic medium

  • Lata, Parveen
    • Structural Engineering and Mechanics
    • /
    • 제66권1호
    • /
    • pp.113-124
    • /
    • 2018
  • In the present paper, we have considered a layered medium of two semi-infinite nonlocal elastic solids with intermediate transversely isotropic magnetothermoelastic solid. The intermediate slab is of uniform thickness with the effects of two temperature, rotation and Hall current and with and without energy dissipation. A plane longitudinal or transverse wave propagating through one of the nonlocal elastic solid half spaces, is made incident upon transversely isotropic slab and it results into various reflected and refracted waves. The amplitude ratios of various reflected and refracted waves are obtained by using appropriate boundary conditions. The effect of nonlocal parameter on the variation of various amplitude ratios with angle of incidence are depicted graphically. Some cases of interest are also deduced.

A unified formulation for modeling of inhomogeneous nonlocal beams

  • Ebrahimi, Farzad;Barati, Mohammad Reza
    • Structural Engineering and Mechanics
    • /
    • 제66권3호
    • /
    • pp.369-377
    • /
    • 2018
  • In this article, buckling and free vibration of functionally graded (FG) nanobeams resting on elastic foundation are investigated by developing various higher order beam theories which capture shear deformation influences through the thickness of the beam without the need for shear correction factors. The elastic foundation is modeled as linear Winkler springs as well as Pasternak shear layer. The material properties of FG nanobeam are supposed to change gradually along the thickness through the Mori-Tanaka model. The small scale effect is taken into consideration based on nonlocal elasticity theory of Eringen. From Hamilton's principle, the nonlocal governing equations of motion are derived and then solved applying analytical solution. To verify the validity of the developed theories, the results of the present work are compared with those available in literature. The effects of shear deformation, elastic foundation, gradient index, nonlocal parameter and slenderness ratio on the buckling and free vibration behavior of FG nanobeams are studied.

A third-order parabolic shear deformation beam theory for nonlocal vibration analysis of magneto-electro-elastic nanobeams embedded in two-parameter elastic foundation

  • Ebrahimi, Farzad;Barati, Mohammad Reza
    • Advances in nano research
    • /
    • 제5권4호
    • /
    • pp.313-336
    • /
    • 2017
  • This article investigates vibration behavior of magneto-electro-elastic functionally graded (MEE-FG) nanobeams embedded in two-parameter elastic foundation using a third-order parabolic shear deformation beam theory. Material properties of MEE-FG nanobeam are supposed to be variable throughout the thickness based on power-law model. Based on Eringen's nonlocal elasticity theory which captures the small size effects and using the Hamilton's principle, the nonlocal governing equations of motions are derived and then solved analytically. Then the influences of elastic foundation, magnetic potential, external electric voltage, nonlocal parameter, power-law index and slenderness ratio on the frequencies of the embedded MEE-FG nanobeams are studied.

Surface effects on scale-dependent vibration behavior of flexoelectric sandwich nanobeams

  • Ebrahimi, Farzad;Karimiasl, Mahsa;Civalek, Omer;Vinyas, Mahesh
    • Advances in nano research
    • /
    • 제7권2호
    • /
    • pp.77-88
    • /
    • 2019
  • This paper infer the transient vibration of piezoelectric sandwich nanobeams, In present work, the flexoelectric effect on the mechanical properties of vibration piezoelectric sandwich nanobeam with different boundary conditions is investigated. According to the Nonlocal elasticity theory in nanostructures, the flexoelectricity is believed to be authentic for such size-dependent properties. The governing equations are derived by Hamilton's principle and boundary condition solved by Galerkin-based solution. This research develops a nonlocal flexoelectric sandwich nanobeam supported by Winkler-Pasternak foundation. The results of this work indicate that natural frequencies of a sandwich nanobeam increase by increasing the Winkler and Pasternak elastic constant. Also, increasing the nonlocal parameter at a constant length decreases the natural frequencies. By increasing the length to thickness ratio (L/h) of nanobeam, the nonlocal frequencies reduce.

Nonlinear resonances of nonlocal strain gradient nanoplates made of functionally graded materials considering geometric imperfection

  • Jia-Qin Xu;Gui-Lin She;Yin-Ping Li;Lei-Lei Gan
    • Steel and Composite Structures
    • /
    • 제47권6호
    • /
    • pp.795-811
    • /
    • 2023
  • When studying the resonance problem of nanoplates, the existing papers do not consider the influences of geometric nonlinearity and initial geometric imperfection, so this paper is to fill this gap. In this paper, based on the nonlocal strain gradient theory (NSGT), the nonlinear resonances of functionally graded (FG) nanoplates with initial geometric imperfection under different boundary conditions are established. In order to consider the small size effect of plates, nonlocal parameters and strain gradient parameters are introduced to expand the assumptions of the first-order shear deformation theory. Subsequently, the equations of motion are derived using the Euler-Lagrange principle and solved with the help of perturbation method. In addition, the effects of initial geometrical imperfection, functionally graded index, strain gradient parameter, nonlocal parameter and porosity on the nonlinear forced vibration behavior of nanoplates under different boundary conditions are discussed.

Semi-analytical stability behavior of composite concrete structures via modified non-classical theories

  • Luxin He;Mostafa Habibi;Majid Khorami
    • Advances in concrete construction
    • /
    • 제17권4호
    • /
    • pp.187-210
    • /
    • 2024
  • Cantilever structures demonstrate diverse nonlocal effects, resulting in either stiffness hardening or dynamic softening behaviors, as various studies have indicated. This research delves into the free and forced vibration analysis of rotating nanoscale cylindrical beams and tubes under external dynamic stress, aiming to thoroughly explore the nonlocal impact from both angles. Utilizing Euler-Bernoulli and Reddy beam theories, in conjunction with higher-order tube theory and Hamilton's principle, nonlocal governing equations are derived with precise boundary conditions for both local and nonlocal behaviors. The study specifically examines two-dimensional functionally graded materials (2D-FGM), characterized by axially functionally graded (AFG) and radial porosity distributions. The resulting partial differential equations are solved using the generalized differential quadrature element method (GDQEM) and Newmark-beta procedures to acquire time-dependent results. This investigation underscores the significant influence of boundary conditions when nonlocal forces act on cantilever structures.

Nonlocal effects on thermal buckling properties of double-walled carbon nanotubes

  • Tounsi, Abdelouahed;Benguediab, Soumia;Adda Bedia, El Abbas;Semmah, Abdelwahed;Zidour, Mohamed
    • Advances in nano research
    • /
    • 제1권1호
    • /
    • pp.1-11
    • /
    • 2013
  • The thermal buckling properties of double-walled carbon nanotubes (DWCNTs) are studied using nonlocal Timoshenko beam model, including the effects of transverse shear deformation and rotary inertia. The DWCNTs are considered as two nanotube shells coupled through the van der Waals interaction between them. The geometric nonlinearity is taken into account, which arises from the mid-plane stretching. Considering the small-scale effects, the governing equilibrium equations are derived and the critical buckling temperatures under uniform temperature rise are obtained. The results show that the critical buckling temperature can be overestimated by the local beam model if the nonlocal effect is overlooked for long nanotubes. In addition, the effect of shear deformation and rotary inertia on the buckling temperature is more obvious for the higher-order modes. The investigation of the thermal buckling properties of DWCNTs may be used as a useful reference for the application and the design of nanostructures in which DWCNTs act as basic elements.