References
- Aksencer, T. and Aydogdu, M. (2011), "Levy type solution method for vibration and buckling of nanoplates using nonlocal elasticity theory", Physica E: Low-dimensional Syst. Nanostruct., 43(4), 954-959. https://doi.org/10.1016/j.physe.2010.11.024
- Analooei, H., Azhari, M. and Heidarpour, A. (2013), "Elastic buckling and vibration analyses of orthotropic nanoplates using nonlocal continuum mechanics and spline finite strip method", Appl. Math. Modelling, 37(10-11), 6703-6717.
- Ansari, R., Ashrafi, M., Pourashraf, T. and Sahmani, S. (2015a), "Vibration and buckling characteristics of functionally graded nanoplates subjected to thermal loading based on surface elasticity theory", Acta Astronautica, 109, 42-51. https://doi.org/10.1016/j.actaastro.2014.12.015
- Ansari, R., Shojaei, M.F., Shahabodini, A. and Bazdid-Vahdati, M. (2015b), "Three-dimensional bending and vibration analysis of functionally graded nanoplates by a novel differential quadrature-based approach", Composite Struct., 131, 753-764. https://doi.org/10.1016/j.compstruct.2015.06.027
- Bedroud, M., Nazemnezhad, R. and Hosseini-Hashemi, S. (2015), "Axisymmetric/asymmetric buckling of functionally graded circular/annular Mindlin nanoplates via nonlocal elasticity", Meccanica, 50(7), 1791-1806. https://doi.org/10.1007/s11012-015-0123-2
- Cheng, C.H. and Chen, T. (2015), "Size-dependent resonance and buckling behavior of nanoplates with high-order surface stress effects", Physica E: Low-dimensional Syst. Nanostruct., 67, 12-17. https://doi.org/10.1016/j.physe.2014.10.040
- Daneshmehr, A., Rajabpoor, A. and Hadi, A. (2015), "Size dependent free vibration analysis of nanoplates made of functionally graded materials based on nonlocal elasticity theory with high order theories", J. Eng. Sci., 95, 23-35. https://doi.org/10.1016/j.ijengsci.2015.05.011
- Farajpour, A., Danesh, M. and Mohammadi, M. (2011), "Buckling analysis of variable thickness nanoplates using nonlocal continuum mechanics", Physica E: Low-dimensional Syst. Nanostruct., 44(3), 719-727. https://doi.org/10.1016/j.physe.2011.11.022
- Farajpour, A., Shahidi, A., Mohammadi, M. and Mahzoon, M. (2012), "Buckling of orthotropic micro/nanoscale plates under linearly varying in-plane load via nonlocal continuum mechanics", Composite Struct., 94(5), 1605-1615. https://doi.org/10.1016/j.compstruct.2011.12.032
- Li, L. and Hu, Y. (2017), "Torsional vibration of bi-directional functionally graded nanotubes based on nonlocal elasticity theory", Composite Struct., 172, 242-250. https://doi.org/10.1016/j.compstruct.2017.03.097
- Li, L., Li, X. and Hu, Y. (2018), "Nonlinear bending of a two-dimensionally functionally graded beam", Composite Struct., 184, 1049-1061. https://doi.org/10.1016/j.compstruct.2017.10.087
- Mori, T. and Tanaka, K. (1973), "Average stress in matrix and average elastic energy of materials with misfitting inclusions", Acta Metallurgica, 21(5), 571-574. https://doi.org/10.1016/0001-6160(73)90064-3
- Naderi, A. and Saidi, A. (2013), "Modified nonlocal mindlin plate theory for buckling analysis of nanoplates", J. Nanomech. Micromech., 4(4), A4013015. https://doi.org/10.1061/(ASCE)NM.2153-5477.0000068
- Nami, M.R., Janghorban, M. and Damadam, M. (2015), "Thermal buckling analysis of functionally graded rectangular nanoplates based on nonlocal third-order shear deformation theory", Aerosp. Sci. Technol., 41, 7-15. https://doi.org/10.1016/j.ast.2014.12.001
- Nguyen, N.T., Hui, D., Lee, J. and Nguyen-Xuan, H. (2015), "An efficient computational approach for sizedependent analysis of functionally graded nanoplates", Comput. Methods Appl. Mech. Eng., 297, 191-218. https://doi.org/10.1016/j.cma.2015.07.021
- Park, J.S. and Kim, J.H. (2006), "Thermal postbuckling and vibration analyses of functionally graded plates", J. Sound Vib. 289(1-2), 77-93. https://doi.org/10.1016/j.jsv.2005.01.031
- Pradhan, S. (2012), "Buckling analysis and small scale effect of biaxially compressed graphene sheets using non-local elasticity theory", Sadhana, 37(4), 461-480. https://doi.org/10.1007/s12046-012-0088-y
- Pradhan, S. and Kumar, A. (2011), "Buckling analysis of single layered graphene sheet under biaxial compression using nonlocal elasticity theory and DQ method", J. Comput. Theoretical Nanosci., 8(7), 1325-1334. https://doi.org/10.1166/jctn.2011.1818
- Pradhan, S. and Murmu, T. (2009), "Small scale effect on the buckling of single-layered graphene sheets under biaxial compression via nonlocal continuum mechanics", Comput. Mater. Sci., 47(1), 268-274. https://doi.org/10.1016/j.commatsci.2009.08.001
- Pradhan, S. and Murmu, T. (2010). "Small scale effect on the buckling analysis of single-layered graphene sheet embedded in an elastic medium based on nonlocal plate theory", Physica E: Low-dimensional Syst. Nanostruct., 42(5), 1293-1301. https://doi.org/10.1016/j.physe.2009.10.053
- Pradhan, S. and Phadikar, J. (2011), "Nonlocal theory for buckling of nanoplates", J. Struct. Stability Dynam., 11(3), 411-429. https://doi.org/10.1142/S021945541100418X
- Salehipour, H., Nahvi, H. and Shahidi, A. (2015a), "Exact analytical solution for free vibration of functionally graded micro/nanoplates via three-dimensional nonlocal elasticity", Physica E: Lowdimensional Syst. Nanostruct., 66, 350-358. https://doi.org/10.1016/j.physe.2014.10.001
- Salehipour, H., Nahvi, H. and Shahidi, A. (2015b), "Exact closed-form free vibration analysis for functionally graded micro/nano plates based on modified couple stress and three-dimensional elasticity theories", Composite Struct., 124, 283-291. https://doi.org/10.1016/j.compstruct.2015.01.015
- Samaei, A., Abbasion, S. and Mirsayar, M. (2011), "Buckling analysis of a single-layer graphene sheet embedded in an elastic medium based on nonlocal Mindlin plate theory", Mech. Res. Commun., 38(7), 481-485. https://doi.org/10.1016/j.mechrescom.2011.06.003
- Zare, M., Nazemnezhad, R. and Hosseini-Hashemi, S. (2015), "Natural frequency analysis of functionally graded rectangular nanoplates with different boundary conditions via an analytical method", Meccanica, 50(9), 2391-2408. https://doi.org/10.1007/s11012-015-0161-9
- Zhu, X. and Li, L. (2017a), "Twisting statics of functionally graded nanotubes using Eringen's nonlocal integral model", Composite Struct., 178, 87-96. https://doi.org/10.1016/j.compstruct.2017.06.067
- Zhu, X. and Li, L. (2017b), "Longitudinal and torsional vibrations of size-dependent rods via nonlocal integral elasticity", J. Mech. Sci., 133, 639-650. https://doi.org/10.1016/j.ijmecsci.2017.09.030
- Zhu, X. and Li, L. (2017c), "Closed form solution for a nonlocal strain gradient rod in tension", J. Eng. Sci., 119, 16-28. https://doi.org/10.1016/j.ijengsci.2017.06.019