• Title/Summary/Keyword: nonlocal effects

Search Result 284, Processing Time 0.017 seconds

Nonlocal elasticity approach for free longitudinal vibration of circular truncated nanocones and method of determining the range of nonlocal small scale

  • Li, C.;Sui, S.H.;Chen, L.;Yao, L.Q.
    • Smart Structures and Systems
    • /
    • v.21 no.3
    • /
    • pp.279-286
    • /
    • 2018
  • The free longitudinal vibration of a circular truncated nanocone is investigated based on the nonlocal elasticity theory. Exact analytical formulations for tapered nanostructures are derived and the nonlinear differential governing equation of motion is developed. The nonlocal small scale effect unavailable in classical continuum theory is addressed to reveal the long-range interaction of atoms implicated in nonlocal constitutive relation. Unlike most previous studies applying the truncation method to the infinite higher-order differential equation, this paper aims to consider all higher-order terms to show the overall nonlocality. The explicit solution of nonlocal stress for longitudinal deformation is determined and it is an infinite series incorporating the classical stress derived in classical mechanics of materials and the infinite higher-order derivative of longitudinal displacement. Subsequently, the first three modes natural frequencies are calculated numerically and the significant effects of nonlocal small scale and vertex angle on natural frequencies are examined. The coupling phenomenon of natural frequency is observed and it is induced by the combined effects of nonlocal small scale and vertex angle. The critical value of nonlocal small scale is defined, and after that a new proposal for determining the range of nonlocal small scale is put forward since the principle of choosing the nonlocal small scale is still unclear at present. Additionally, two different types of nonlocal effects, namely the nonlocal stiffness weakening and strengthening, reversed phenomena existing in nanostructures are observed and verified. Hence the opposite nonlocal effects are resolved again clearly. The nano-engineers dealing with a circular truncated nanocone-based sensors and oscillators may benefit from the present work.

Effect of rotation and inclined load in a nonlocal magneto-thermoelastic solid with two temperature

  • Lata, Parveen;Singh, Sukhveer
    • Advances in materials Research
    • /
    • v.11 no.1
    • /
    • pp.23-39
    • /
    • 2022
  • This work deals with the two-dimensional deformation in a homogeneous isotropic nonlocal magneto-thermoelastic solid with two temperatures under the effects of inclined load at different inclinations. The mathematical model has been formulated by subjecting the bounding surface to a concentrated load. The Laplace and Fourier transform techniques have been used for obtaining the solution to the problem in transformed domain. The expressions for nonlocal thermal stresses, displacements and temperature are obtained in the physical domain using a numerical inversion technique. The effects of nonlocal parameter, rotation and inclined load in the physical domain are depicted and illustrated graphically. The results obtained in this paper can be useful for the people who are working in the field of nonlocal thermoelasticity, nonlocal material science, physicists and new material designers. It is found that there is a significant difference due to presence and absence of nonlocal parameter.

Finite strain nonlinear longitudinal vibration of nanorods

  • Eren, Mehmet;Aydogdu, Metin
    • Advances in nano research
    • /
    • v.6 no.4
    • /
    • pp.323-337
    • /
    • 2018
  • The nonlinear free vibration of a nanorod subjected to finite strain is investigated. The governing equation of motion in material configuration in terms of displacement is determined. By means of Galerkin method, the Fourier series solutions satisfying some typical boundary conditions are determined. The amplitude-frequency relationship and interaction between the modes are studied. The effects of nonlocal elasticity are shown for different length of nanotubes and nonlocal parameter. The results show that nonlocal effects lead to additional internal modal interaction for nanorod vibrations.

A nonlocal strain gradient refined plate model for thermal vibration analysis of embedded graphene sheets via DQM

  • Ebrahimi, Farzad;Barati, Mohammad Reza
    • Structural Engineering and Mechanics
    • /
    • v.66 no.6
    • /
    • pp.693-701
    • /
    • 2018
  • This paper develops a nonlocal strain gradient plate model for vibration analysis of graphene sheets under thermal environments. For more accurate analysis of graphene sheets, the proposed theory contains two scale parameters related to the nonlocal and strain gradient effects. Graphene sheet is modeled via a two-variable shear deformation plate theory needless of shear correction factors. Governing equations of a nonlocal strain gradient graphene sheet on elastic substrate are derived via Hamilton's principle. Differential quadrature method (DQM) is implemented to solve the governing equations for different boundary conditions. Effects of different factors such as temperature rise, nonlocal parameter, length scale parameter, elastic foundation and aspect ratio on vibration characteristics a graphene sheets are studied. It is seen that vibration frequencies and critical buckling temperatures become larger and smaller with increase of strain gradient and nonlocal parameter, respectively.

Stability analysis of porous multi-phase nanocrystalline nonlocal beams based on a general higher-order couple-stress beam model

  • Ebrahimi, Farzad;Barati, Mohammad Reza
    • Structural Engineering and Mechanics
    • /
    • v.65 no.4
    • /
    • pp.465-476
    • /
    • 2018
  • This article investigates buckling behavior of a multi-phase nanocrystalline nanobeam resting on Winkler-Pasternak foundation in the framework of nonlocal couple stress elasticity and a higher order refined beam model. In this model, the essential measures to describe the real material structure of nanocrystalline nanobeams and the size effects were incorporated. This non-classical nanobeam model contains couple stress effect to capture grains micro-rotations. Moreover, the nonlocal elasticity theory is employed to study the nonlocal and long-range interactions between the particles. The present model can degenerate into the classical model if the nonlocal parameter, and couple stress effects are omitted. Hamilton's principle is employed to derive the governing equations and the related boundary conditions which are solved applying an analytical approach. The buckling loads are compared with those of nonlocal couple stress-based beams. It is showed that buckling loads of a nanocrystalline nanobeam depend on the grain size, grain rotations, porosities, interface, elastic foundation, shear deformation, surface effect, nonlocality and boundary conditions.

Bending behavior of microfilaments in living cell with nonlocal effects

  • Muhammad Safeer;Muhammad Taj;Mohamed A. Khadimallah;Muzamal Hussain;Saima Akram;Faisal Mehmood Butt;Abdelouahed Tounsi
    • Advances in nano research
    • /
    • v.15 no.1
    • /
    • pp.15-23
    • /
    • 2023
  • Dynamics of protein filamentous has been an active area of research since the last few decades as the role of cytoskeletal components, microtubules, intermediate filaments and microfilaments is very important in cell functions. During cell functions, these components undergo the deformations like bending, buckling and vibrations. In the present paper, bending and buckling of microfilaments are studied by using Euler Bernoulli beam theory with nonlocal parametric effects in conjunction. The obtained results show that the nonlocal parametric effects are not ignorable and the applications of nonlocal parameters well agree with the experimental verifications.

Static bending study of AFG nanobeam using local stress-and strain-driven nonlocal integral models

  • Yuan Tang;Hai Qing
    • Advances in nano research
    • /
    • v.16 no.3
    • /
    • pp.265-272
    • /
    • 2024
  • In this paper, the problem of static bending of axially functionally graded (AFG) nanobeam is formulated with the local stress(Lσ)- and strain-driven(εD) two-phase local/nonlocal integral models (TPNIMs). The novelty of the present study aims to compare the size-effects of nonlocal integral models on bending deflections of AFG Euler-Bernoulli nano-beams. The integral relation between strain and nonlocal stress components based on two types nonlocal integral models is transformed unitedly and equivalently into differential form with constitutive boundary conditions. Purely LσD- and εD-NIMs would lead to ill-posed mathematical formulation, and Purely εD- and LσD-nonlocal differential models (NDM) may result in inconsistent size-dependent bending responses. The general differential quadrature method is applied to obtain the numerical results for bending deflection and moment of AFG nanobeam subjected to different boundary and loading conditions. The influence of AFG index, nonlocal models, and nonlocal parameters on the bending deflections of AFG Euler-Bernoulli nanobeams is investigated numerically. A consistent softening effects can be obtained for both LσD- and εD-TPNIMs. The results from current work may provide useful guidelines for designing and optimizing AFG Euler-Bernoulli beam based nano instruments.

An efficient numerical model for free vibration of temperature-dependent porous FG nano-scale beams using a nonlocal strain gradient theory

  • Tarek Merzouki;Mohammed SidAhmed Houari
    • Structural Engineering and Mechanics
    • /
    • v.90 no.1
    • /
    • pp.1-18
    • /
    • 2024
  • The present study conducts a thorough analysis of thermal vibrations in functionally graded porous nanocomposite beams within a thermal setting. Investigating the temperature-dependent material properties of these beams, which continuously vary across their thickness in accordance with a power-law function, a finite element approach is developed. This approach utilizes a nonlocal strain gradient theory and accounts for a linear temperature rise. The analysis employs four different patterns of porosity distribution to characterize the functionally graded porous materials. A novel two-variable shear deformation beam nonlocal strain gradient theory, based on trigonometric functions, is introduced to examine the combined effects of nonlocal stress and strain gradient on these beams. The derived governing equations are solved through a 3-nodes beam element. A comprehensive parametric study delves into the influence of structural parameters, such as thicknessratio, beam length, nonlocal scale parameter, and strain gradient parameter. Furthermore, the study explores the impact of thermal effects, porosity distribution forms, and material distribution profiles on the free vibration of temperature-dependent FG nanobeams. The results reveal the substantial influence of these effects on the vibration behavior of functionally graded nanobeams under thermal conditions. This research presents a finite element approach to examine the thermo-mechanical behavior of nonlocal temperature-dependent FG nanobeams, filling the gap where analytical results are unavailable.

Vibration of axially functionally graded nano rods and beams with a variable nonlocal parameter

  • Aydogdu, Metin;Arda, Mustafa;Filiz, Seckin
    • Advances in nano research
    • /
    • v.6 no.3
    • /
    • pp.257-278
    • /
    • 2018
  • Vibration of axially functionally graded nano-rods and beams is investigated. It is assumed that the material properties change along the rod and beam length. The Ritz method with algebraic polynomials is used in the formulation of the problems. Stress gradient elasticity theory is utilized in order to include the nonlocal effects. Frequencies are obtained for different boundary conditions, geometrical and material properties. Nonlocal parameter is assumed as changing linearly or quadratically along the length of the nanostructure. Frequencies are compared to constant nonlocal parameter cases and considerable differences are observed between constant and variable nonlocal parameter cases. Mode shapes in various cases are depicted in order to explain the effects of axial grading.

Mechanics of nonlocal advanced magneto-electro-viscoelastic plates

  • Ebrahimi, Farzad;Barati, Mohammad Reza;Tornabene, Francesco
    • Structural Engineering and Mechanics
    • /
    • v.71 no.3
    • /
    • pp.257-269
    • /
    • 2019
  • This paper develops a nonlocal strain gradient plate model for damping vibration analysis of smart magneto-electro-viscoelastic nanoplates resting on visco-Pasternak medium. For more accurate analysis of nanoplate, the proposed theory contains two scale parameters related to the nonlocal and strain gradient effects. Viscoelastic effect which is neglected in all previous papers on magneto-electro-viscoelastic nanoplates is considered based on Kelvin-Voigt model. Governing equations of a nonlocal strain gradient smart nanoplate on viscoelastic substrate are derived via Hamilton's principle. Galerkin's method is implemented to solve the governing equations. Effects of different factors such as viscoelasticity, nonlocal parameter, length scale parameter, applied voltage and magnetic potential on damping vibration characteristics of a nanoplate are studied.