Browse > Article
http://dx.doi.org/10.12989/amr.2022.11.1.023

Effect of rotation and inclined load in a nonlocal magneto-thermoelastic solid with two temperature  

Lata, Parveen (Department of Basic and Applied Sciences, Punjabi University Patiala)
Singh, Sukhveer (Punjabi University APS Neighbourhood Campus)
Publication Information
Advances in materials Research / v.11, no.1, 2022 , pp. 23-39 More about this Journal
Abstract
This work deals with the two-dimensional deformation in a homogeneous isotropic nonlocal magneto-thermoelastic solid with two temperatures under the effects of inclined load at different inclinations. The mathematical model has been formulated by subjecting the bounding surface to a concentrated load. The Laplace and Fourier transform techniques have been used for obtaining the solution to the problem in transformed domain. The expressions for nonlocal thermal stresses, displacements and temperature are obtained in the physical domain using a numerical inversion technique. The effects of nonlocal parameter, rotation and inclined load in the physical domain are depicted and illustrated graphically. The results obtained in this paper can be useful for the people who are working in the field of nonlocal thermoelasticity, nonlocal material science, physicists and new material designers. It is found that there is a significant difference due to presence and absence of nonlocal parameter.
Keywords
concentrated load; Eringen model of nonlocal theories; inclined load; magnetic field; nonlocal theory of thermoelasticityl; nonlocality; rotation; thermoelasticity; two temperatures;
Citations & Related Records
Times Cited By KSCI : 16  (Citation Analysis)
연도 인용수 순위
1 Kumar, R., Sharma, N. and Lata, P. (2016), "Thermomechanical interactions in the transversely isotropic magnetothermoelastic medium with vacuum and with and without energy dissipation with combined effects of rotation, vacuum and two temperatures", Appl. Mathe. Modell., 40, 6560-6575. https://doi.org/10.1016/j.apm.2016.01.061   DOI
2 Marin, M., Vlase, S. and Paun, M. (2015), "Considerations on double porosity structure for micropolar bodies", Aip Advances, 5(3), 037113. https://doi.org/10.1063/1.4914912   DOI
3 Eringen, A.C. (2002), Nonlocal Continum Field Theories, Springer, New York, USA.
4 Eringen, A.C. and Edelen, D.G.B. (1972), "On nonlocal elasticity", Int. J. Eng. Sci., 10, 233-248. https://doi.org/10.1016/0020-7225(72)90039-0   DOI
5 Heidari, F., Taheri, K., Sheybani, M., Janghorban, M. and Tounsi, A. (2021), "On the mechanics of nanocomposites reinforced by wavy/defected/aggregated nanotubes", Steel Compos. Struct., Int. J., 38(5), 533-545. https://doi.org/10.12989/scs.2021.38.5.533   DOI
6 Abualnour, M., Chikh, A., Hebali, H., Kaci, A., Tounsi, A., Bousahla, A.A. and Tounsi, A. (2019), "Thermomechanical analysis of antisymmetric laminated reinforced composite plates using a new four variable trigonometric refined plate theory", Comput. Concrete, Int. J., 24(6), 489-498. https://doi.org/10.12989/cac.2019.24.6.489   DOI
7 Asghar, S., Naeem, M.N., Hussain, M., Taj, M. and Tounsi, A. (2020), "Prediction and assessment of nonlocal natural frequencies of DWCNTs: Vibration analysis", Comput. Concrete, Int. J., 25(2), 133-144. https://doi.org/10.12989/cac.2020.25.2.133   DOI
8 Balubaid, M., Tounsi, A., Dakhel, B. and Mahmoud, S.R. (2019), "Free vibration investigation of FG nanoscale plate using nonlocal two variables integral refined plate theory", Comput. Concrete, Int. J., 24(6), 579-586. https://doi.org/10.12989/cac.2019.24.6.579   DOI
9 Chen, P.J. and Gurtin, M.E. (1968), "On a theory of heat conduction involving two temperatures", J. Appl. Mathe. Phys. (ZAMP), 19, 614-627. https://doi.org/10.1007/BF01594969   DOI
10 Youssef, H.M. and Al-Lehaibi, E.A. (2007), "State space approach of two-temperature generalized thermoelasticity of one-dimensional problem", Int. J. Solids Struct., 44, 1550-1562. https://doi.org/10.1016/j.ijsolstr.2006.06.035   DOI
11 Zenkour, A.M. (2020), "Magneto-thermal shock for a fiber-reinforced anisotropic half-space studied with a refined multi-dual-phase-lag model", J. Phys. Chem. Solids, 137, 109213. https://doi.org/10.1016/j.jpcs.2019.109213   DOI
12 Ebrahimi, F. and Shafiei, N. (2016), "Application of eringen's nonlocal elasticity theory for vibration analysis of rotating functionally graded nanobeams", Smart Struct. Syst., Int. J., 17(5), 837-857. https://doi.org/10.12989/sss.2016.17.5.837   DOI
13 Edelen, D.G.B. and Laws, N. (1971), "On the thermodynamics of systems with nonlocality", Arch. Rational Mech. Anal., 43, 24-35.   DOI
14 Edelen, D.G.B., Green, A.E. and Laws, N. (1971), "Nonlocal continuum mechanics", Arch. Rational Mech. Anal., 43, 36-44.   DOI
15 Dhaliwal, R.S. and Singh, A. (1980), Dynamic Coupled Thermoelasticity, Hindustan Publisher Corporation, New Delhi, India.
16 Othman, M.I.A., Atwa, S.Y., Jahangir, A. and Khan, A. (2015), "The effect of rotation on plane waves in generalized thermo-microstretch elastic solid for a mode-I crack under green naghdi theory", J. Computat. Theor. Nanosci. ,12(11), 4987-4997. https://doi.org/10.1166/jctn.2015.4022   DOI
17 Matouk, H., Bousahla, A.A., Heireche, H., Bourada, F., Bedia, E.A., Tounsi, A., Mahmoud, S.R., Tounsi, A. and Benrahou, K.H. (2020), "Investigation on hygro-thermal vibration of P-FG and symmetric S-FG nanobeam using integral Timoshenko beam theory", Adv. Nano Res., Int. J., 8(4), 293-305. https://doi.org/10.12989/anr.2020.8.4.293   DOI
18 Mondal, S. (2020), "Memory response in a magneto-thermoelastic rod with moving heat source based on Eringen's nonlocal theory under dual-phase lag heat conduction", Int. J. Computat. Methods, 17(9), 1950072. https://doi.org/10.1142/S0219876219500725   DOI
19 Othman, M.I.A. and Abbas, I.A. (2012), "Generalized thermoelasticity of thermal-shock problem in a nonhomogeneous isotropic hollow cylinder with energy dissipation", Int. J. Thermophys., 33, 913-923. https://doi.org/10.1007/s10765-012-1202-4   DOI
20 Press, W.H., Teukolshy, S.A., Vellerling, W.T. and Flannery, B.P. (1986), Numerical Recipes in Fortran, Cambridge University Press, Cambridge, UK.
21 Saeed, T., Abbas, I. and Marin, M. (2020), "A GL model on thermo-elastic interaction in a poroelastic material using finite element method", Symmetry, 12(3), 1-24. https://doi.org/10.3390/sym12030488   DOI
22 Lata, P and Singh, S. (2019), "Effect of nonlocal parameter on nonlocal thermoelastic solid due to inclined load", Steel Compos. Struct., Int. J., 33(1), 123-131. https://doi.org/10.12989/scs.2019.33.1.123   DOI
23 Sharma, N., Kumar, R. and Lata, P. (2016), "Thermomechanical interactions in transversely isotropic magnetothermoelastic medium with vacuum and with and without energy dissipiation with combined effects of rotation, vacuum and two temperatures", Appl. Mathe. Modell., 40, 6560-6575. https://doi.org/10.1016/j.apm.2016.01.061   DOI
24 Kumar, R., Sharma, N. and Lata, P. (2017), "Effects of Hall current and two temperatures in transversely isotropic magnetothermoelastic with and without energy dissipation due to ramp-type heat", Mech. Adv. Mater. Struct., 24(8), 625-635. https://doi.org/10.1080/15376494.2016.1196769   DOI
25 Rouabhia, A., Chikh, A., Bousahla, A.A., Bourada, F., Heireche, H., Tounsi, A., Kouider Halim, B., Tounsi, A. and Al-Zahrani, M.M. (2020), "Physical stability response of a SLGS resting on viscoelastic medium using nonlocal integral first-order theory", Steel Compos. Struct., Int. J., 37(6), 695-709. https://doi.org/10.12989/scs.2020.37.6.695   DOI
26 Lata, P. and Singh, S. (2020a), "Deformation in a nonlocal magneto-thermoelastic solid with hall current due to normal force", Geomech. Eng., Int. J., 22(2), 109-117. https://doi.org/10.12989/gae.2020.22.2.109   DOI
27 Soleimani, A., Dastani, K., Hadi, A. and Naei, M.H. (2019), "Effect of out of plane defects on the postbuckling behaviour of graphene sheets based on nonlocal elasticity theory", Steel Compos. Struct., Int. J., 30(6), 517-534. https://doi.org/10.12989/scs.2019.30.6.517   DOI
28 Lata, P. and Singh, S. (2020c), "Thermomechanical interactions in a nonlocal thermoelastic model with two temperature and memory dependent derivatives", Coupl. Syst. Mech., Int. J., 9(5), 397-410. https://doi.org/10.12989/csm.2020.9.5.397   DOI
29 Lata, P. and Singh, S. (2020e), "Plane wave propagation in a nonlocal magneto-thermoelastic solid with two temperature and Hall current", Waves Random Complex Media, 1-27. https://doi.org/10.1080/17455030.2020.1838667   DOI
30 Lata, P. and Singh, S. (2020d), "Effects of nonlocality and two temperature in a nonlocal thermoelastic solid due to ramp type heat source", Arab J. Basic Appl. Sci., 27(1), 358-364. https://doi.org/10.1080/25765299.2020.1825157   DOI
31 Marin, M. (1996), "Generalized solutions in elasticity of micropolar bodies with voids", Revista de la Academia Canaria de Ciencias, 8(1), 101-106.
32 Marin, M. (1997), "An uniqueness result for body with voids in linear thermoelasticity", Rendiconti di Matematica, Roma, 17(7), 103-113.
33 Lata, P. and Singh, S. (2020b), "Time harmonic interactions in non local thermoelastic solid with two temperatures", Struct. Eng. Mech., Int. J., 74(3), 341-350. https://doi.org/10.12989/sem.2020.74.3.341   DOI
34 Abouelregal, A.E. (2019), "Rotating magneto-thermoelastic rod with finite length due to moving heat sources via Eringen's nonlocal model", J. Computat. Appl. Mech., 50(1), 118-126. https:/doi.org/10.22059/jcamech. 2019.275893.360   DOI
35 Jahangir, A., Tanvir, F. and Zenkour, A. (2020), "Reflection of photothermoelastic waves in a semiconductor material with different relaxations", Indian J. Phys., 95(1), 51-59. https://doi.org/10.1007/s12648-020-01690-x   DOI
36 Youssef, H.M. (2005), "Theory of two-temperature-generalized thermoelasticity", IMA J. Appl. Mathe., 71, 383-390. https://doi.org/10.1093/imamat/hxh101   DOI
37 Bellifa, H., Selim, M.M., Chikh, A., Bousahla, A.A., Bourada, F., Tounsi, A., Benrahou, K.H., Al-Zahrani, M.M. and Tounsi, A. (2021), "Influence of porosity on thermal buckling behavior of functionally graded beams", Smart Struct. Syst., Int. J., 27(4), 719-728. https://doi.org/10.12989/sss.2021.27.4.719   DOI
38 Alzahrani, F.S. and Abbas, I.A. (2016), "The effect of magnetic field on a thermoelastic fiber-reinforced material under GN-III theory," Steel Compos. Struct., Int. J., 22(2), 369-386. https://doi.org/10.12989/scs.2016.22.2.369   DOI
39 Honig, G. and Hirdes, U. (1984), "A method for the numerical inversion of laplace transform", J. Computat. Appl. Mathe., 10, 113-132. https://doi.org/10.1016/0377-0427(84)90075-X   DOI
40 Hussain, M., Naeem, M.N., Tounsi, A. and Taj, M. (2019), "Nonlocal effect on the vibration of armchair and zigzag SWCNTs with bending rigidity", Adv. Nano Res., Int. J., 7(6), 431-442. https://doi.org/10.12989/anr.2019.7.6.431   DOI
41 Khan, A.A., Bukhari, S.R., Marin, M. and Ellahi, R. (2019), "Effects of chemical reaction on third-grade MHD fluid flow under the influence of heat and mass transfer with variable reactive index", Heat Transf. Res., 50(11), 1061-1080. https://doi.org/10.1615/HeatTransRes.2018028397   DOI