Browse > Article
http://dx.doi.org/10.12989/anr.2018.6.3.257

Vibration of axially functionally graded nano rods and beams with a variable nonlocal parameter  

Aydogdu, Metin (Department of Mechanical Engineering, Trakya University)
Arda, Mustafa (Department of Mechanical Engineering, Trakya University)
Filiz, Seckin (Corlu Vocational School, Namik Kemal University)
Publication Information
Advances in nano research / v.6, no.3, 2018 , pp. 257-278 More about this Journal
Abstract
Vibration of axially functionally graded nano-rods and beams is investigated. It is assumed that the material properties change along the rod and beam length. The Ritz method with algebraic polynomials is used in the formulation of the problems. Stress gradient elasticity theory is utilized in order to include the nonlocal effects. Frequencies are obtained for different boundary conditions, geometrical and material properties. Nonlocal parameter is assumed as changing linearly or quadratically along the length of the nanostructure. Frequencies are compared to constant nonlocal parameter cases and considerable differences are observed between constant and variable nonlocal parameter cases. Mode shapes in various cases are depicted in order to explain the effects of axial grading.
Keywords
vibration; axially functionally graded; nanorod; nanobeam; nonlocal elasticity;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 Adali, S. (2008), "Variational principles for multi-walled carbon nanotubes undergoing buckling based on nonlocal elasticity theory", Phys. Lett., Section A: General Atom. Solid State Phys., 372(35), 5701-5705. DOI: 10.1016/j.physleta.2008.07.003
2 Adali, S. (2009), "Variational principles for transversely vibrating multiwalled carbon nanotubes based on nonlocal euler-bernoulli beam model", Nano Lett., 9(5), 1737-1741. DOI: 10.1021/nl8027087   DOI
3 Adali, S. (2015), "Variational Principles for Vibrating Carbon Nanotubes Conveying Fluid, Based on the Nonlocal Beam Model", East Asian J. Appl. Math., 5(3), 209-221. DOI: 10.4208/eajam.130814.250515a   DOI
4 Akgoz, B. and Civalek, O. (2013), "Free vibration analysis of axially functionally graded tapered Bernoulli-Euler microbeams based on the modified couple stress theory", Compos. Struct., 98, 314-322. DOI: 10.1016/j.compstruct.2012.11.020   DOI
5 Anandakumar, G. and Kim, J.H. (2010), "On the modal behavior of a three-dimensional functionally graded cantilever beam: Poisson's ratio and material sampling effects", Compos. Struct., 92(6), 1358-1371. DOI: 10.1016/j.compstruct.2009.11.020   DOI
6 Aydogdu, M. (2008), "Semi-inverse method for vibration and buckling of axially functionally graded beams", J. Reinf. Plast. Compos., 27(7), 683-691. DOI: 10.1177/0731684407081369   DOI
7 Aydogdu, M. (2009a), "A general nonlocal beam theory: Its application to nanobeam bending, buckling and vibration", Physica E: Low-Dimen. Syst. Nanostruct., 41(9), 1651-1655. DOI: 10.1016/j.physe.2009.05.014   DOI
8 Aydogdu, M. (2009b), "Axial vibration of the nanorods with the nonlocal continuum rod model", Phys. E: Low-Dimen. Syst. Nanostruct., 41(5), 861-864. DOI: 10.1016/j.physe.2009.01.007   DOI
9 Aydogdu, M. and Filiz, S. (2011), "Vibration analysis of piecewise and continuously axially graded rods and beams", In: Galloway AL (ed.) Mechanical Vibrations: Types, Testing and Analysis, Nova Publishers, pp. 95-146
10 Barati, M.R. (2017), "Nonlocal-strain gradient forced vibration analysis of metal foam nanoplates with uniform and graded porosities", Adv. Nano Res., Int. J., 5(4), 393-414. DOI: 10.12989/anr.2017.5.4.393   DOI
11 Berger, R., Kwon, P. and Dharan, C.K.H. (1994), "High speed centrifugal casting of metal matrix composites", Proceedings of the 5th International Symposium on Transport Phonomena and Dynamics of Rotating Machinery, Maui, HI, USA.
12 Bharti, I., Gupta, N. and Gupta, K.M. (2013), "Novel Applications of Functionally Graded Nano, Optoelectronic and Thermoelectric Materials", Int. J. Mater. Mech. Manuf., 1(3), 221-224. DOI: 10.7763/IJMMM.2013.V1.47
13 Ebrahimi, F. and Barati, M.R. (2017d), "Longitudinal varying elastic foundation effects on vibration behavior of axially graded nanobeams via nonlocal strain gradient elasticity theory", Mech. Adv. Mater. Struct., 6494, 1-11. DOI: 10.1080/15376494.2017.1329467
14 Ebrahimi, F. and Barati, M.R. (2017a), "Thermal-induced nonlocal vibration characteristics of heterogeneous beams", Adv. Mater. Res., Int. J., 6(2), 93-128. DOI: 10.12989/amr.2017.6.2.093
15 Ebrahimi, F. and Barati, M.R. (2017b), "Buckling analysis of nonlocal strain gradient axially functionally graded nanobeams resting on variable elastic medium", Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 095440621771351. DOI: 10.1177/0954406217713518
16 Ebrahimi, F. and Barati, M.R. (2017c), "Through-the-length temperature distribution effects on thermal vibration analysis of nonlocal strain-gradient axially graded nanobeams subjected to nonuniform magnetic field", J. Thermal Stress., 40(5), 548-563. DOI: 10.1080/01495739.2016.1254076   DOI
17 Ebrahimi, F. and Jafari, A. (2017), "Investigating vibration behavior of smart imperfect functionally graded beam subjected to magnetic-electric fields based on refined shear deformation theory", Adv. Nano Res., Int. J., 5(4), 281-301. DOI:10.12989/anr.2017.5.4.281   DOI
18 Ebrahimi, F., Mahmoodi, F. and Barati, M.R. (2017), "Thermo-mechanical vibration analysis of functionally graded micro/nanoscale beams with porosities based on modified couple stress theory", Adv. Mater. Res., Int. J., 6(3), 279-301. DOI:10.12989/amr.2017.6.3.279
19 Ebrahimi, F., Barati, M.R. and Zenkour, A.M. (2018), "A new nonlocal elasticity theory with graded nonlocality for thermo-mechanical vibration of FG nanobeams via a nonlocal third-order shear deformation theory", Mech. Adv. Mater. Struct., 25(6), 512-522. DOI: 10.1080/15376494.2017.1285458   DOI
20 Elishakoff, I. and Guede, Z. (2004), "Analytical polynomial solutions for vibrating axially graded beams", Mech. Adv. Mater. Struct., 11(6 II), 517-533. DOI: 10.1080/15376490490452669   DOI
21 Elishakoff, I. and Johnson, V. (2005), "Apparently the first closed-form solution of vibrating inhomogeneous beam with a tip mass", J. Sound Vib., 286(4-5), 1057-1066. DOI: 10.1016/j.jsv.2005.01.050   DOI
22 Eringen, A.C. (1976), "Part III - Nonlocal Polar Field Theories", Continuum Phys., 205-267.
23 Eringen, A.C. (1983), "On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves", J. Appl. Phys., 54(9), 4703-4710. DOI: 10.1063/1.332803   DOI
24 Ferreira, A.J.M., Batra, R.C., Roque, C.M.C., Qian, L.F. and Jorge, R.M.N. (2006), "Natural frequencies of functionally graded plates by a meshless method", Compos. Struct., 75(1-4), 593-600. DOI: 10.1016/j.compstruct.2006.04.018   DOI
25 Fukui, Y. (1990), "Fundamental investigation of functionally gradient material manufacturing system using centrifugal force", Transact. Japan Soc. Mech. Eng. Series C, 56(521), 67-70. DOI: 10.1299/kikaic.56.67   DOI
26 Hosseini-Hashemi, S. and Nazemnezhad, R. (2013), "An analytical study on the nonlinear free vibration of functionally graded nanobeams incorporating surface effects", Compos. Part B: Eng., 52, 199-206. DOI: 10.1016/j.compositesb.2013.04.023   DOI
27 Hu, Y.G., Liew, K.M., Wang, Q., He, X.Q. and Yakobson, B.I. (2008), "Nonlocal shell model for elastic wave propagation in single- and double-walled carbon nanotubes", J. Mech. Phys. Solids, 56(12), 3475-3485. DOI: 10.1016/j.jmps.2008.08.010   DOI
28 Huang, Y. and Li, X.F. (2010), "A new approach for free vibration of axially functionally graded beams with non-uniform cross-section", J. Sound Vib., 329(11), 2291-2303. DOI: 10.1016/j.jsv.2009.12.029   DOI
29 Janghorban, M. and Zare, A. (2011), "Free vibration analysis of functionally graded carbon nanotubes with variable thickness by differential quadrature method", Phys. E: Low-Dimen. Syst. Nanostruct., 43(9), 1602-1604. DOI: 10.1016/j.physe.2011.05.002   DOI
30 Huang, Y., Yang, L.E. and Luo, Q.Z. (2013), "Free vibration of axially functionally graded Timoshenko beams with non-uniform cross-section", Compos. Part B: Eng., 45(1), 1493-1498. DOI: 10.1016/j.compositesb.2012.09.015   DOI
31 Lambros, J., Narayanaswamy, A., Santare, M.H. and Anlas, G. (1999), "Manufacture and testing of a functionally graded material", J. Eng. Mater. Technol., 121(October), 488-493. DOI: 10.1115/1.2812406   DOI
32 Li, X., Li, L., Hu, Y., Ding, Z. and Deng, W. (2017), "Bending, buckling and vibration of axially functionally graded beams based on nonlocal strain gradient theory", Compos. Struct., 165, 250-265. DOI: 10.1016/j.compstruct.2017.01.032   DOI
33 Lu, P., Lee, H.P., Lu, C. and Zhang, P.Q. (2007), "Application of nonlocal beam models for carbon nanotubes", Int. J. Solids Struct., 44(16), 5289-5300. DOI: 10.1016/j.ijsolstr.2006.12.034   DOI
34 Moya, J.S. (1995), "Layered ceramics", Adv. Mater., 7(2), 185-189. DOI: 10.1002/adma.19950070219   DOI
35 Nejad, M.Z. and Hadi, A. (2016), "Non-local analysis of free vibration of bi-directional functionally graded Euler-Bernoulli nano-beams", Int. J. Eng. Sci., 105, 1-11. DOI: 10.1016/j.ijengsci.2016.04.011   DOI
36 Peddieson, J., Buchanan, G.R. and McNitt, R.P. (2003), "Application of nonlocal continuum models to nanotechnology", Int. J. Eng. Sci., 41(3-5), 305-312. DOI: 10.1016/S0020-7225(02)00210-0   DOI
37 Shahba, A., Attarnejad, R., Marvi, M.T. and Hajilar, S. (2011), "Free vibration and stability analysis of axially functionally graded tapered Timoshenko beams with classical and non-classical boundary conditions", Compos. Part B: Eng., 42(4), 801-808. DOI: 10.1016/j.compositesb.2011.01.017   DOI
38 Qian, L.F., Batra, R.C. and Chen, L.M. (2004), "Static and dynamic deformations of thick functionally graded elastic plates by using higher-order shear and normal deformable plate theory and meshless local Petrov-Galerkin method", Compos. Part B: Eng., 35(6-8), 685-697. DOI: 10.1016/j.compositesb.2004.02.004   DOI
39 Robinson, M.T.A. and Adali, S. (2016), "Variational solution for buckling of nonlocal carbon nanotubes under uniformly and triangularly distributed axial loads", Compos. Struct. DOI: 10.1016/j.compstruct.2016.01.026
40 Sedighi, H.M., Daneshmand, F. and Abadyan, M. (2015), "Dynamic instability analysis of electrostatic functionally graded doubly-clamped nano-actuators", Compos. Struct., 124, 55-64. DOI: 10.1016/j.compstruct.2015.01.004   DOI
41 Shafiei, N., Kazemi, M. and Ghadiri, M. (2016), "Comparison of modeling of the rotating tapered axially functionally graded Timoshenko and Euler-Bernoulli microbeams", Phys. E: Low-Dimen. Syst. Nanostruct., 83, 74-87. DOI: 10.1016/j.physe.2016.04.011   DOI
42 Shafiei, N., Mirjavadi, S.S., Afshari, B.M., Rabby, S. and Hamouda, A.M.S. (2017), "Nonlinear thermal buckling of axially functionally graded micro and nanobeams", Compos. Struct., 168, 428-439. DOI: 10.1016/j.compstruct.2017.02.048   DOI
43 Simsek, M. (2010), "Fundamental frequency analysis of functionally graded beams by using different higher-order beam theories", Nucl. Eng. Des., 240(4), 697-705. DOI: 10.1016/j.nucengdes.2009.12.013   DOI
44 Wang, Q. (2005), "Wave propagation in carbon nanotubes via nonlocal continuum mechanics", J. Appl. Phys., 98(12), 124301. DOI: 10.1063/1.2141648   DOI
45 Qian, L.F. and Batra, R.C. (2005), "Design of bidirectional functionally graded plate for optimal natural frequencies", J. Sound Vib., 280(1-2), 415-424. DOI: 10.1016/j.jsv.2004.01.042   DOI
46 Simsek, M. (2012), "Nonlocal effects in the free longitudinal vibration of axially functionally graded tapered nanorods", Computat. Mater. Sci., 61, 257-265. DOI: 10.1016/j.commatsci.2012.04.001   DOI
47 Sudak, L.J. (2003), "Column buckling of multiwalled carbon nanotubes using nonlocal continuum mechanics", J. Appl. Phys., 94(11), 7281-7287. DOI: 10.1063/1.1625437   DOI
48 Uymaz, B. and Aydogdu, M. (2007), "Three-dimensional vibration analyses of functionally graded plates under various boundary conditions", J. Reinf. Plast. Compos., 26(18), 1847-1863. DOI: 10.1177/0731684407081351   DOI
49 Vel, S.S. and Batra, R.C. (2004), "Three-dimensional exact solution for the vibration of functionally graded rectangular plates", J. Sound Vib., 272(3-5), 703-730. DOI: 10.1016/S0022-460X(03)00412-7   DOI
50 Wu, L., Wang, Q.S. and Elishakoff, I. (2005), "Semi-inverse method for axially functionally graded beams with an anti-symmetric vibration mode", J. Sound Vib., 284(3-5), 1190-1202. DOI: 10.1016/j.jsv.2004.08.038   DOI
51 Yamanouchi, M., Koizumi, M., Hirai, T. and Shiota, I. (1990), "On the design of functionally gradient materials", Proceedings of the 1st International Symposium on Functionally Gradient Materials, pp. 5-10.
52 Yang, J.E., Park, W.H., Kim, C.J., Kim, Z.H. and Jo, M.H. (2008), "Axially graded heteroepitaxy and Raman spectroscopic characterizations of Si1-xGex nanowires", Appl. Phys. Lett., 92(26), 3-6. DOI: 10.1063/1.2939564