• Title/Summary/Keyword: nonlinear weight

Search Result 484, Processing Time 0.03 seconds

Nonlinear H$\infty$ Control for Linear Systems using Nonlinear Weight

  • Kubota, K.;Samei, M.;Shimizu, E;Koga, M.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10a
    • /
    • pp.60-63
    • /
    • 1996
  • This study deals with the nonlinear H$_{\infty}$ control problem of linear system using nonlinear weight. Generally the solvable condition of nonlinear H$_{\infty}$ control problem is given by the Hamilton Jacobi equality or inequality, but it is very difficult to solve. In this study, some constraints of nonlinear weight reduce the solvable condition to linear Riccati equation. Some examples of the control system design using nonlinear weight are shown.n.

  • PDF

A Study on Offshore Longline Type Aquaculture Facilites, Part 1 : 3-D Nonlinear Static Analyisis of Cable-Buoy-Weight Mooring System (내파성 가리비 연승식 양식시성레 관한 연구(I) - 케이블-부이-중량물 계류시스템의 3차원 비선형 정적해석 -)

  • 신현경;김덕수
    • Journal of Ocean Engineering and Technology
    • /
    • v.10 no.1
    • /
    • pp.92-99
    • /
    • 1996
  • Longline type aquaculture facilities are being used for scallpop culture in 30 m of water 2.5 km off the coast of Joomoonjin, Kangwon-do. In this paper, the facilities are modeled by the cabele-buoy-weight system, subject to the nonlinear behaviors of the mooring lines and the effects of current. Its static configuration is shown as a solution of 3-D nonlinear static equation and Runge-Kutta $4^{th}$ method is employed.

  • PDF

Nonlinear system control using neural network guaranteed Lyapunov stability (리아프노브 안정성이 보장되는 신경회로망을 이용한 비선형 시스템 제어)

  • Seong, Hong-Seok;Lee, Kwae-Hui
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.2 no.3
    • /
    • pp.142-147
    • /
    • 1996
  • In this paper, we describe the algorithm which controls an unknown nonlinear system with multilayer neural network. The multilayer neural network can be used to approximate any continuous function to any desired degree of accuracy. With the former fact, we approximate unknown nonlinear function on the nonlinear system by using of multilayer neural network. The weight-update rule of multilayer neural network is derived to satisfy Lyapunov stability. The whole control system constitutes controller using feedback linearization method. The weight of neural network which is used to implement nonlinear function is updated by the derived update-rule. The proposed control algorithm is verified through computer simulation.

  • PDF

80000 RPM용 고속회전축계의 최적설계에 관한 연구

  • 김종립;윤기찬;하재용;박종권
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.04a
    • /
    • pp.312-317
    • /
    • 1997
  • This paper present an optimum design for the rotor-bearing system of a high-speed (80000RPM) ultra-centrifuge supported by ball bearings with nonlinear stiffness characteristics. To obtain the nonlinear bearing stiffnesses, a ball bearing is modelled in five degrees of freedom and is analyzed quasi-statically. The dynamic behaviors of the nonlinear rotor-bearing system are analyed by using a transfer-matrix method iteratively. For optimum design, minimizing the weight of a rotor is used as a cost function and the Augmented Lagrange Multiplier (ALM) method is employed. The result shows that the rotor-bearing system is optimized to obtain 8% weight reduction.

The Influence of Assay Error Weight on Gentamicin Pharmacokinetics Using the Bayesian and Nonlinear Least Square Regression Analysis in Appendicitis Patients

  • Jin, Pil-Burm
    • Archives of Pharmacal Research
    • /
    • v.28 no.5
    • /
    • pp.598-603
    • /
    • 2005
  • The purpose of this study was to determine the influence of weight with gentamicin assay error on the Bayesian and nonlinear least squares regression analysis in 12 Korean appen dicitis patients. Gentamicin was administered intravenously over 0.5 h every 8 h. Three specimens were collected at 48 h after the first dose from all patients at the following times, just before regularly scheduled infusion, at 0.5 h and 2 h after the end of 0.5 h infusion. Serum gentamicin levels were analyzed by fluorescence polarization immunoassay technique with TDxFLx. The standard deviation (SD) of the assay over its working range had been determined at the serum gentamicin concentrations of 0, 2, 4, 8, 12, and 16 ${\mu}g$/mL in quadruplicate. The polynominal equation of gentamicin assay error was found to be SD (${\mu}g$/mL) = 0.0246-(0.0495C)+ (0.00203C$^2$). There were differences in the influence of weight with gentamicin assay error on pharmacokinetic parameters of gentamicin using the nonlinear least squares regression analysis but there were no differences on the Bayesian analysis. This polynominal equation can be used to improve the precision of fitting of pharmacokinetic models to optimize the process of model simulation both for population and for individualized pharmacokinetic models. The result would be improved dosage regimens and better, safer care of patients receiving gentamicin.

Robust Adaptive Output Feedback Controller Using Fuzzy-Neural Networks for a Class of Uncertain Nonlinear Systems (퍼지뉴럴 네트워크를 이용한 불확실한 비선형 시스템의 출력 피드백 강인 적응 제어)

  • Hwang, Young-Ho;Lee, Eun-Wook;Kim, Hong-Pil;Yang, Hai-Won
    • Proceedings of the KIEE Conference
    • /
    • 2003.11b
    • /
    • pp.187-190
    • /
    • 2003
  • In this paper, we address the robust adaptive backstepping controller using fuzzy neural network (FHIN) for a class of uncertain output feedback nonlinear systems with disturbance. A new algorithm is proposed for estimation of unknown bounds and adaptive control of the uncertain nonlinear systems. The state estimation is solved using K-fillers. All unknown nonlinear functions are approximated by FNN. The FNN weight adaptation rule is derived from Lyapunov stability analysis and guarantees that the adapted weight error and tracking error are bounded. The compensated controller is designed to compensate the FNN approximation error and external disturbance. Finally, simulation results show that the proposed controller can achieve favorable tracking performance and robustness with regard to unknown function and external disturbance.

  • PDF

An Optimum Design of a Rotor-Bearing Spindle System for a Ultra Centrifuge (초고속 원심분리 회전축계의 최적설계)

  • 김종립;윤기찬;박종권
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.15 no.6
    • /
    • pp.145-152
    • /
    • 1998
  • This paper presents an optimum design of a rotor-bearing spindle system for a ultra centrifuge (80,000 RPM) supported by ball bearings with nonlinear stiffness characteristics. To obtain the nonlinear bearing stiffnesses, a ball bearing is modeled in five degrees of freedom and is analyzed quasi-statically. The dynamic behaviors of the nonlinear rotor-bearing system are analyzed by using a transfer-matrix method iteratively. For optimization. we use the cost function that simultaneously minimizes the weight of a rotor and maximizes the separation margins to yield the critical speeds as far from the operating speed as possible. Augmented Lagrange Multiplier (ALM) method is employed for the nonlinear optimization problem. The result shows that the rotor-bearing spindle system is optimized to obtain 9.5% weight reduction and 21% separation margin.

  • PDF

Optimal design using genetic algorithm with nonlinear elastic analysis

  • Kim, Seung-Eock;Song, Weon-Keun;Ma, Sang-Soo
    • Structural Engineering and Mechanics
    • /
    • v.17 no.5
    • /
    • pp.707-725
    • /
    • 2004
  • An optimal design method with nonlinear elastic analysis is presented. The proposed nonlinear elastic method overcomes the drawback of the conventional LRFD method that accounts for nonlinear effect by using the moment amplification factors of $B_1$ and $B_2$. The genetic algorithm used is a procedure based on Darwinian notions of survival of the fittest, where selection, crossover, and mutation operators are employed to look for high performance ones among sections in the database. They are satisfied with the constraint functions and give the lightest weight to the structure. The objective function taken is the total weight of the steel structure and the constraint functions are strength, serviceability, and ductility requirement. Case studies of a planar portal frame, a space two-story frame, and a three-dimensional steel arch bridge are presented.

An Analysis on the Nonlinear Behavior of Block Pavements using Multi-Load Level Falling Weight Deflectometer Testing (다단계 FWD 하중을 이용한 블록포장의 비선형 거동 분석)

  • Park, Hee Mun;Kim, Yeon Tae;Lee, Su Hyung
    • International Journal of Highway Engineering
    • /
    • v.18 no.6
    • /
    • pp.35-40
    • /
    • 2016
  • OBJECTIVES : The objective of this study is to analyze the nonlinear behavior of block pavements using multi-load level falling weight deflectometer (FWD) deflections. METHODS : Recently, block pavements are employed not only in sidewalks, but also in roadways. For the application of block pavements in roadways, the structural capacities of subbase and subgrade are important factors that support the carry traffic load. Multi-load level FWD testing was conducted on block pavements to analyze their nonlinear behavior. The deflection ratio due to the increase in load was analyzed to estimate the nonlinearity of block pavements. Finite element method with nonlinear soil model was applied to simulate the actual nonlinear behavior of the block pavement under different levels of load. RESULTS : The results of the FWD testing show that the center deflections in block pavements are approximately ten times greater than that in asphalt pavements. The deflection ratios of the block pavement due to the increase in the load range from 1.2 to 1.5, indicating that the deflection increased by 20~50%. The material coefficients of the nonlinear soil model were determined by comparing the measured deflections with the predicted deflections using the finite element method. CONCLUSIONS : In this study, the nonlinear behavior of block pavements was reviewed using multi-load level FWD testing. The deflection ratio proposed in this study can estimate the nonlinearity of block pavements. The use of nonlinear soil model in subbase and subgrade increases the accuracy of predicting deflections in finite element method.