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Abstract This study deals with the nonlinear H,. control problemn of linear systemn using nonlinear
weight. Generally the solvable condition of nonlincar H. control problemn is given by the Hamilton
Jacobi equality or inequality. but it is very difficult to solve. In this study, some constraints of nonlinear
weight reduce the solvable condition to lincar Riccati equation. Some examples of the control system

design nsing nonlincar weight arc shown.
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1 Introduction

In this paper. we consider nonlinear H,. control prob-
lems for linear system with nonlinear weight. In other
words, the state equation of the generalized plant is lin-
ear, and the equation of controlled output is nonlinear.
It is knows that the solvable condition E)r the nonlinear
H,__ control problem is given by the Hamilton-Jacobi
equation or inequality. [1, 2, 3, 4]. Since the Hamilton-
Jacobi equation, which is a partial differential equation,
is very difficult to solve. On the other hand it is known
that local version of Hamilton-Jacobi equation for lin-
ear system is expressed as Algebraic Riccati equation,
that is easy to calculate. We derives some conditions of
nonlinear weight for reducing the solvability condition
of a Hamilton-Jacobi equation to a Algebraic Riccati
equation.

We use the following notation. * € R™ denotes an n-
dimensional real vector, and Euclidean norm is defined
by || - ||- u(t) : R — R"™ on [ty,o0]. let Ly be a set of
measurable function on (ty, oo] with ffzo || (t)]|?dt <

. its norm is defined by |Jujj; % S llu(t)||?dt)?, and

llull2 # 0. L;/{0} denotes Ly with u € L,.

Consider the following nonlinear system S ,,,.
T
z

0l

f%; + g(z)w (1)

where ¢ € R'.w € R™z € RP is a state vec-
tor, an external input and a control output, respec-
tively. f(x),h(z) are smooth vector functions with
f(o) = o.h(0) = 0. g(x) is matrix function. Lz-gain
for S,., is defined as follows.

“SZ“‘“LZ(: = sup “z”).
welL,/{0} llwl-

It is known that following theorem.

Theorem 1 The systemsS ., (1)is exponential stable
and |8 wl|lL2e < 7. if and only if there exist a posi-
tive constant €. and a positive definite solution ¢{x) of
the following inequality. [1. 2. 3. 4].
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3mTf+W0$ng b';ﬁ"h h+exTae <0 (2)

2 Problem Definition

In this paper, we consider the following system.

A:l: + Blw + Bzu

X = 3
= (1+z))Ciz + Dis(z)u (3)

z

wherez € R". w € R™, u € R™, z € R? is a state
vector, an external input. a control input, a control
output, respectively. A, B;, B, ,C; are constant ma-

trices. We assume the following condition. D{zCl =
0O, D1T2D12 = a?(x)I, where l{z), a(x) is a scalar func-
tion with 1 + () > 0,a(xz) > 0,l(0) =0,a(0) =1
Notice that the state equation of the system (3) is
linear, but the equation of control output is nonlinear.
From assumption, we can consider that l(x).a(z) is

a nonlinear weight for the state and a control input,
respectively.

3 Solvability Condition of Non-
linear H, Control Problems

Let v be a positive constant. The sufficient condition
for which the system S,,,(3) is internally stable and
has Ly-gain such that [|S;u||z2: < 7. and a state feed-

back control law which satisfies it are given by following
theorem.

Theorem 2 Consider the system (3). Assume that
l(z),a(x) are satisfy the following condition.

(1— —12—> 2" PB,B] Pz
a
+{(1+Ux))?-1}-2TCcTCiz < 0 (4)

If there exists ;'msiti'ue definite symmetric matriz P
which satisfies the following Riccaty equation.

1
PA+ATP+ —PB,BTP+CTC, +cI
Nz
- PB,BT’P=0 (5)
then the state feedback nonlinear H . control problem is

solvable. Where ¢ is a positive constant. Then a state
feedback law is given by

u=K(z)= —EIEB;‘CPI (6)

Proof: If u is expressed by K (x). then the closed loop
system as follows

(Az + B, K(z)) + Byw

z (7)
(14 {(2)) Crz + D12 (x) K ()

z

The condition that the above closed loop system is in-
ternally stable and has La-gain such that §S,,|lz2. <



v, is given by theorem 1. Therefore, we consider
a Hamilton-Jacobi inequality(2) for this closed loop
system(7). If a positive definite solution ¢ of (2) is

expressed as ¢ = 2T Pz, where P is positive definite
symmetric matrix, then
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= Pz + P%z, 52T = TP + 2T P7.

The inequality(2) can be written as

H

1
2T(PA+ATP + ?PBlBTP +cTc,
+eI - PB;BIP)z + 2" PB,B] Pz

+2¢TPB,K + d*(2)KTK
+{(1+i(=))* -1}z"CTCz < 0.

If we choose the P as a solution of the Riccati

equation(5), then

H (z)KTK + 22" PB,K + 2" PB,BY Pz

+{(1+U=z))? -1}=zTCcTCiz <0,

We have by -completing the squares:,

H

1 T
(z) | K+ =BIPz K+iB’£Pm
a2 ? a’*
1
+ (1 ~ —Z-) 2" PB,B; Px
(15
+{(1+U=z)? -1} -aTCcTCiz <0

Therefore. a state feedback control law which minimize
H is (6). If a(z).l(zx) satisfy (4). then the Hamilton-
Jacobi inequality is satisfied. and the nonlinear H
control problem 1s solvable.

Note: The first order approximation of the system(3)

around the origin is considered as following linear sys-

ten.

T A$+BJW+BQU
z C1w+D12u

phc,=0. DLD,=1

The necessary and sufficient condition that this linear
system is internally stable and H..-norm from w to z is
less than v (In other words, linear H control problem
is solvable.) is given by Riccati equation(5). Then a
state feedback law is given by u = —Bj Pz It denotes
that the solvability condition of the nonlinear H, con-
trol problem for systeni(3) around origin is determined
by Riccati equation(5).

In other words, The solvability condition (5) around
the origin is the global solvability condition under the
assumption(4) in theorem2. A state feedback control

law(6) is same as u = —Bng around the origin.

4 Determination of Nonlinear
Weight

For designing control system using theorem 2,
The nonlinear weight l{x).a{x) has to satisfy the
assumption(4). We take notice of the term I{x).a(x)
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and consider two problems. One is [(2) > 0, the other
is a(z) > 1. In (4).If l{x) is greater than or equals to
0. then the second term of left hand side of (4). ({(1+
l(z))? - 1} .2TCTC\z) is nonnegative. To satisfy (4).
the first term ((1— 1/a?) 'ZI!TPBngP.’B) has to be
semi-negative, i.e : 0 < a(z) < 1.

The other side. if a(x) is greater than or equals to 1,
the first term of left hand side of (4) is nonnegative. so
the second term has to be semi-negative, i.e. : —1 <
l{z) <0

It 1s considered as one of tradeoff. For system (3). we
can consider that {(&) is nonlinear weight for state x,
a{z) is for control input u.

We consider two problems, which the disturbance at-
tenuation problem ({{z)} > 0) and the input limita-
tion problem(a(z) > 1). to determine nonlinear weight
l(z).a(x) which satisfy (4).

4.1 Disturbance Attenuation Problem

First. we consider the condition I(z) > 0.

Theorem 3 If the nonlinear weight l{x). a(x) have fol-
lowing form,

\ﬂ +myzTPB,BT Pz -1
1

\/1 + 7n,()$TC¥1C1(L'

l(x) (8)

(9)

a(x)

then the nonlinear H.. control problem is solvable.
Where P is a positive definite solution of Riccati equa-
tion (5). and my is en any scalar function such that
mg > 0. Then a state feedback control law is given by

K{z) = - (1 + 771,(-,1'TC§PCla:) B;;FP:B. (10)

Proof: If I(x) > 0. then the second term of left
hand side of the equation(4) is not negative. So we
have to choose a(x) which satisfy (4). But when
:BTPBng‘Pil) equals to 0 . the first term of (4) equals
to 0 regardless a({x).

Therefore, the second term has to be

{1+ U=)?-1}-2"C{Ciz =0.

To satisfy this condition, we choose a weight I(z) as
(1+x))? —1=mezT PB,BY Pz,

where 1,y is an any scalar function which satisfy my >

0. Then I(z) becomes (8). We rewrite (4), then we
have

1 ;
:cTPBgBZTP:c- (1 - — + 7TL()(ETC%1012:) <0.
a2
So. we have

1
a< .
\ﬁ +mozTCTCz

Then a state feedback control law is given such that
1

10} by substituting @ = =
( ) y 8 AV 1+m.0:1:"C,' Cﬁlf




Note: In thecorem 3,we can choose a scalar function mg un-
restrictedly. In other words, it is free parameter. Moreover,
the first order approximation of the controller(10) around

the origin is K = —BI Pz. It is samc as linear one. The
other side, The further the state from the origin, which im-

plies mozTCT C1z is large , the K(z) has large gain.

4.2 Input Limitation Problem

Next, we consider the condition a(x) > 1.

Theorem 4 If the nonlinear weight l(z), a(x) have fol-
lowing form,

l(z)=

T
14 l-qir'mlz Ci;Ciz . (11)
14+mzTC{Ciz+ m,zTPB,B; Pz

12
14 7!1,11TPBngPz (12)

\/1 + mlmTCTC'ﬂ: + anITPBngPI
a(z) =

then the nonlinear H., control problem is solvable.
Where P is a positive definite solution of Riccati equa-
tion (5), and my is an any scalar function such that
my > 0. Then a state feedback control law is given by

K(z)
1+ mizT PB,BT Pz

- B] Pz
14+ mqz7CTCrz + my2TPB,BY Px il

(13)

Proof: It can be proved by the similarly way in theorem
(3).

Note: Iu theorem 4, we can choose a scalar function m; nn-
restrictedly. In other words, it is free parameter. Morcover,
the first order approximation of the controller(13) around
the origin is K = —BI Pz. It is same as linear onc. The
other side, The further the state from the origin, the K(z)
has small gain.

5 Numerical Example

In this section, we consider vibration control for 2-
degree-of-freedom structure as an example of designing
controller with nonlinear weight.

Figure 1:Model of 2-degree-of-freedom structure

5.1 Model

The 2-degree-of-freedom structure is given by Fig:1.
When a disturbance § is inputed from the earth, the
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Figure 2:Block diagram of generalized plant

dynamic vibration absorber (DVA), which are installed
above the top floor, controls the vibration of the build-
ing. This problem is considered as a disturbance atten-
uation fproblem. Damping coefficient and Spring con-
stant of the DVA are ¢, and &, respectively. The con-
trol input u is an actuator force f. The DVA like this
is called active, and the state equation of this system is
linear.

Parameters of the structure on Fig:1 is given as fol-
lows mq; = my = 2.0,m, = 0.138 (kg). ¢; = ¢2 =
0.08,¢, = 0.78 (N s/m). k; = ky = 2600.0. %, = 62.2
(N/m) Natural frequency of this structure are 22.2
(rad/sec) which is the first mode and 58.3 (rad/sec)
which is the second mode. We choose ¢, and kg, so
that in u = f = 0 (passive control). the system can be
stabilized and the DVA can control the first mode of
vibration optimal.

We define the state variables z,,, outputs y such that

. . . T
x, = [hy hy he hy hy h, ]
y = [h (ha—h1) hal
Then we have the state equation of this system,
T, = Apz,+ Byu+ Dyg 14
y = Chr, (14)

5.2 Generalized Plant

The block diagram of the nounlinear H.. state feed-
back control system is shown by Fig:2. The disturbance
w is ¢, and denotes the linear weight for the output

Y.
W (s) = diag|{W,, W,.W,] is given by
_2450.0 700
ST s47000 " 54700

Express by the state equation,
Awew + Bwy
Cwzw + Dwy

The state variables of the generalized plant G is given

Tw
Z2

by ¢ = [ mg z%, ]T , then we have
* = Az + Byw+ Bru
z = (1+lz)Ciz+alx)Di2u (15)
vy = Cz(l?

where A. B,.B5(z).C,.C2,D;»

[ a4 o [ b, [ B,
ax[ e, 0 ]om=] )= %]
0] @] 1

Cl:[DWC,, CW:|.D12—[0j|
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Figure 3:Time responses of hy:§ = 0.1sin 58.3¢
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Figure 4:Time responses of h;:§ = 10.0sin 58.3¢

5.3 Simulation

We show results of simulation from Fig:3 to Fig:6
We use following control inputs.

e passive controller (v« = 0)

e linear H controller

(u = K(z) = -BT Pz)

e nonlinear H.. controller

(v= K(x) = — % B Px)

When I(xz) = 0 and a(z) = 1. the nonlinear H. control
coincide with the linear H.. state feedback control. We
choose ¥ = 0.5,¢ = 0.01 in Riccati equation(5), and
parameter of the nonlinear weight is my = 100.0.

First, when the small sine wave disturbance § of sec-
ond niode frequency inputs, response of h; is shown in
Fig:3 The responses of the linear control and the non-
linear one have less amplitude than passive one.

Second, when the large sine wave disturbance in-
puts,response of hy is shown in Fig:4. The relation of
passive and linear control does not change, but nonlin-
ear control has less amplitude.

If the disturbance has small amplitude. the response
of hy does not have large difference between linear and
nonlinear control, because I(x) almost equals to 0. The
other hand, the disturbance has large one, the effect of
l{x) 1s larger, so the effect of nonlinear controller comes
up. It is evident, because the nonlinear controller is
same as linear one around the origin.

Finally., the response of « is shown Fig:5 as small
disturbance of second mode frequency inputs, Fig:6 as
large. When the small disturbance inputs. the response
of u of the nonlinear controller is almost same as 1inear
one. But the disturbance become large. u of nonlinear
controller is greater than linear one.
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Figure 5:Time responses of u:§ = 0.1sin 58.3¢
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Figure 6:Time responses of w:§ = 10.0sin 58.3¢

6 Conclusion

In this paper, we consider a nonlinear H.. control prob-
lem for linear system with nonlinear weight. and (ferive
the solvability condition. The simulation results show
the efficiency of nonlinear weight. some constraint to
nonlinear weight, the solvability coundition is given by
Riccati equation(5). It is same as the solvability con-
dition of linear H, state feedback control problem.
In other words. If linear H.. control problem is solv-
able, then nonlinear H,. control problem is solvable by
choosing nonlinear weight., suita*)ly. and a state feed-
back control law is designed simplicity.

References

[1] A.J. van der Schaft. Nounlinear state space H.. con-
trol theory. In H.L.Trentelman and J.C.Willems,
editors. Perspectives in Control, Series: Progress
in Systems and Control, the 2nd ECC,Groningen.
Birkhaiiser, 1993.

J.Immura, T.Sugie. and T.Yoshikawa. Internal sta-

bility and L, gain of nonlinear systems. Tranc. of
SICE. 29(6):659 667, 1993.

JImura. Nonliear H . control. Journal of SICE,
34(3):188 195, 1995.

J. Imura, T. Sugie. and T. Yoshikawa. Strict H..
control of nonlinear systems based on the hamilton-

jacobi inequality. In First Asian Control Confer-
ence, pages 189 192, 1994.

2]

[3

—

&



