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WEIGHTED SOBOLEV REGULARITY OF VISCOSITY

SOLUTIONS FOR FULLY NONLINEAR PARABOLIC

EQUATIONS

Mikyoung Lee

Abstract. We obtain interior regularity estimates in the weighted Or-

licz spaces for viscosity solutions of fully nonlinear uniformly parabolic
equations

ut − F (D2u, x, t) = f(x, t) in Q1

under relaxed structure conditions on the nonlinear operator F .

1. Introduction

The paper is devoted to studying interior regularity of viscosity solutions for
the fully nonlinear parabolic equation

ut − F (D2u, x, t) = f(x, t) in Q1 := B1 × (−1, 0], (1.1)

where F is an uniformly elliptic operator in S(n)×Q1 and f is a given datum.
Here, S(n) denotes the set of n × n real symmetric matrices with real entries.
We prove the interior regularity estimates in the weighted Orlicz spaces for
viscosity solutions of (1.1) under relaxed structure conditions imposed on the
nonlinearity F . The integrability of Hessian of the solutions is relevant to the
behavior of the nonlinear operator F (X,x, t) in X variable near infinity. In this
respect, we take the approximation argument using the notion of the recession
operator F ? defined by

F ?(X,x, t) = lim
µ→0

µF (µ−1X,x, t)

which was introduced in the context of regularity theory for fully nonlinear
elliptic equations in [18, 19] . In order to relax the structure conditions on the
nonlinear operator F , we impose the convexity condition with respect to X
variable and the small oscillation condition with respect to x, t variables on the
recession operator F ? instead of the original operator F .
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Lp regularity theory for fully nonlinear equations has been extensively stud-
ied since Caffarelli proved interior Lp regularity estimates for the Hessian of
solutions of fully nonlinear elliptic equations for all p > n in [4]. Adapting the
approach of Caffarelli, Wang [21] contributed to the development of Lp regu-
larity theory for fully nonlinear parabolic equations. This approach is based on
the perturbation argument by comparing the solutions of the original problem
with ones of the corresponding limiting problem. Its crucial point is that it
needs the C2,1 regularity property for solutions of the limiting problem which
is guaranteed under the convexity assumption of the problem, see [15]. Re-
cently, various attempts have been made to relax this structure assumption on
the operator F for the Lp regularity theory of fully nonlinear equations in for
instance [3, 6, 14, 18]. In particular, Castillo and Pimentel [6] established the
Lp estimates for the Hessian and time derivatives of solutions to fully nonlinear
parabolic equations under asymptotic assumptions. Our results in the present
paper extend their results to the settings of weighted Orlicz spaces. Similar
problems have already studied for fully nonlinear elliptic equations by the au-
thor in [16].

The remainder of this paper is organized as follows. In Section 2, we present
our main result providing definitions and properties related to weighted Orlicz
spaces. The main result is proved in Section 3.

2. Preliminaries and Main result

2.1. Notations and Definitions

We denote by Br(y) the open ball in Rn centered at y ∈ Rn with radius
r > 0 and Qr(y, s) = Br(y) × (s − r2, s] as the parabolic cylinder in Rn+1 for
(y, s) ∈ Rn ×R and r > 0. We define the parabolic distance between the points
(x, t), (y, s) ∈ Rn × R by

dp((x, t), (y, s)) := max{|x− y|,
√
|t− s|}

where | · | is the Euclidean norm. The parabolic boundary of Qr(y, s) is defined
by

∂pQr(y, s) = (∂Br(y)× (s− r2, s)) ∪ (Br(y)× {t = s− r2}).

For simplicity, we denote Br ≡ Br(0) and Qr ≡ Qr(0, 0).
Let U be a bounded domain in Rn+1 with n ≥ 2. For a function g : U →

R, we denote its spatial gradient by Dg, its spatial Hessian by D2g and its
time derivative by gt. The space C2,1(U) is the space of functions which are
continuously differentiable twice with respect to space and once with respect
to time. In other words, g ∈ C2,1(U) means that g,Dg,D2g, gt ∈ C(U). For
simplicity, we write ∫

−
U

g(x, t) dxdt =
1

|U |

∫
U

g(x, t) dxdt
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for g ∈ L1
loc(U), where |U | is the n + 1-dimensional Lebesgue measure of U.

From now on, the letter c denotes a positive universal constant that may vary
at each appearance.

We now introduce the definition of weighted Orlicz spaces and their basic
properties treated in this paper. A function Φ: [0,∞)→ [0,∞] is called an N -
function if it is convex, continuous and increasing, and satisfies that Φ(0) = 0,

Φ(ρ) > 0 for all ρ > 0, lim
ρ→∞

Φ(ρ) = +∞, and lim
ρ→0+

Φ(ρ)

ρ
= lim
ρ→∞

ρ

Φ(ρ)
= 0.

In this paper, the N -function Φ considered are assumed to satisfy ∆2 ∩ ∇2-
condition (denoted by Φ ∈ ∆2 ∩ ∇2), which means that there exist constants
κ1, κ2 > 1 such that

Φ(2ρ) ≤ κ1Φ(ρ) and Φ(ρ) ≤ 1

2κ2
Φ(κ2ρ) for all ρ > 0.

Given a weight w and an N -function Φ ∈ ∆2 ∩ ∇2, the weighted Orlicz space
LΦ
w(U) is defined as the set of all Lebesgue measurable functions g on U such

that ∫
U

Φ (|g(x, t)|)w(x, t) dxdt < +∞.

The space LΦ
w(U) is a reflexive Banach space under the following Luxemburg

norm

‖g‖LΦ
w(U) = inf

{
s > 0 :

∫
U

Φ

(
|g(x, t)|

s

)
w(x, t) dxdt ≤ 1

}
by the ∆2∩∇2-condition of Φ. In addition, for Φ ∈ ∆2∩∇2, we note that there
exist constants q1, q2 with 1 < q1 ≤ q2 <∞ such that

1

c
min{νq1 , νq2}Φ(ρ) ≤ Φ(νρ) ≤ c max{νq1 , νq2}Φ(ρ) (2.1)

for ν, ρ ≥ 0, where the constant c is independent of ν and ρ, and∫
U

Φ

(
|g(x, t)|
‖g‖LΦ

w(U)

)
w(x, t) dxdt = 1,

for nonzero function g ∈ LΦ
w(U). Then one can see that

‖g‖LΦ
w(U) − 1 ≤

∫
U

Φ(|g(x, t)|)w(x, t) dxdt ≤ c
(
‖g‖q2

LΦ
w(U)

+ 1
)

(2.2)

where the constant c > 1 is independent of g. We further have the unit ball
property as follows:∫

U

Φ(|g(x, t)|)w(x, t) dxdt ≤ 1 ⇐⇒ ‖g‖LΦ
w(U) ≤ 1.

We refer to [10, 12, 13] for the properties and more details about the N -function
Φ and the weighted Orlicz spaces.
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Next we will present one of main assumptions which is imposed on the weight.
A weight w is called an Aq weight with 1 < q <∞, denoted by w ∈ Aq, if

[w]q := sup
Q⊂Rn+1

(∫
−
Q

w(x, t) dxdt

)(∫
−
Q

w(x, t)
−1
q−1 dxdt

)q−1

<∞,

where the supremum is taken over all parabolic cylinder Q ⊂ Rn+1. We use the

notation w(V ) to denote

∫
V

w(x, t) dxdt for a measurable set V ⊂ Rn+1.

Basically, the Aq weights are invariant under translation, dilation and mul-
tiplication by a positive scalar and have doubling property and monotonicity,
that is, Aq1 ⊂ Aq2 for q1 ≤ q2. Moreover, they have the following self-improving
property: if w ∈ Aq, then w ∈ Aq−ε for some small constant ε = ε(n, q, [w]q) > 0.
In particular, the following property of the Aq weights is essential in the proof
of our main result, see [9, 20] for its detail proof with further properties of Aq
weights.

Lemma 2.1. Let w ∈ Aq where 1 < q < ∞. There are constants γ1, γ2 > 0
depending only on n, q and [w]q such that for any parabolic cylinder Q in Rn+1

and any measurable set D ⊂ Q,

1

[w]q

(
|D|
|Q|

)q
≤ w(D)

w(Q)
≤ γ1

(
|D|
|Q|

)γ2

.

Given the N -function Φ with the ∆2 ∩ ∇2-condition, our main assumption
on the weight w is that w ∈ Ai(Φ). Here, i(Φ) is the lower index of Φ defined
by

i(Φ) = lim
ν→0+

log(hΦ(ν))

log ν
= sup

0<ν<1

log(hΦ(ν))

log ν
,

where hΦ(ν) = sup
ρ>0

Φ(νρ)

Φ(ρ)
for ν > 0. When Φ(ρ) = ρq with q > 1, it is clear

that i(Φ) = q. If w ∈ Ai(Φ), we remark that the boundedness of the Hardy-
Littlewood maximal function holds in the corresponding weighted Orlicz space
LΦ
w, see Lemma 3.2 in the next section. We further notice that i(Φ) is equal to

the supremum of those q1 in the above inequality (2.1) with ν ≥ 1, and then
i(Φ) > 1, see [8] for more details.

2.2. Main result

Let U be a bounded domain in Rn+1 with n ≥ 2. We consider the fully
nonlinear parabolic equations

ut − F (D2u, x, t) = 0 in U, (2.3)

where the nonlinearity F = F (X,x, t) is a Carathéodory function defined on
S(n)× U , that is, X 7→ F (X,x, t) is continuous for a.e. (x, t) ∈ U and (x, t) 7→
F (X,x, t) is measurable for all X ∈ S(n).
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In this paper, we assume that the operator F is uniformly elliptic (i.e. (2.3) is
uniformly parabolic), that is, there exist constants λ and Λ with 0 < λ ≤ Λ <∞
such that

λ‖Y ‖ ≤ F (X + Y, x, t)− F (X,x, t) ≤ Λ‖Y ‖
for all X,Y ∈ S(n), Y ≥ 0 and almost all (x, t) ∈ U , where ‖Y ‖ := sup

|x|=1

|Y x|.

Definition 1. We say that u ∈ C(U) is an Lq-viscosity solution of (2.3) if the
following two conditions hold:

(1) for all ϕ such that ϕ,ϕt, D
2ϕ ∈ Lqloc(U), whenever ε > 0, O ⊂ U is open

and

ϕt − F (D2ϕ, x, t) ≥ ε a.e. in O,
u− ϕ cannot attain a local maximum in O,

(2) for all ϕ such that ϕ,ϕt, D
2ϕ ∈ Lqloc(U), whenever ε > 0, O ⊂ U is open

and

ϕt − F (D2ϕ, x, t) ≤ −ε a.e. in O,
u− ϕ cannot attain a local minimum in O.

Whenever F is continuous in all variables, u ∈ C(U) is called a C-viscosity
solution of (2.3) if ϕ ∈ C2(U) in Definition 1. It is seen that C-viscosity
solutions of (2.3) are Lq-viscosity solutions whenever F is continuous in all
variables, see [5, Proposition 2.9].

Remark 1. For Φ ∈ ∆2 ∩ ∇2 and w ∈ Ai(Φ), L
Φ
w(U) is continuously embedded

in Lp(U) for some constant p = p(Φ, w) satisfying 1 < p < i(Φ) by the self-
improving property of w, see [1, Lemma 2.5] for its proof. In this regard, we
can deal with Lp(n+1)-viscosity solutions of the equation (1.1) provided that
|f |n+1 ∈ LΦ

w(Q1).

As mentioned in the introduction, we will use the recession operator F ?

associated with the nonlinear operator F which is given by

F ?(X,x, t) := lim
µ→0

Fµ(X,x, t)

assuming its existence for any X ∈ S(n) and (x, t) ∈ Q1, where Fµ(X,x, t) :=
µF (µ−1X,x, t) for any µ > 0. Note that Fµ and F ? are uniformly elliptic with
the same ellipticity constants as F. See [18, 19] for an overview for the recession
operator F ?.

In this paper, we suppose that the recession operator F ? associated with
the original operator F exists and vt − F ?(D2v, x0, t0) = 0 has C2,1 interior
estimates with constant c? for any (x0, t0) ∈ Q1, that is, for any v0 ∈ C(Q1)
there exists a C-viscosity solution v ∈ C2,1(Q1) ∩ C(Q1) of{

vt − F ?(D2v, x0, t0) = 0 in Q1,
v = v0 on ∂pQ1,
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with
sup
Q1/2

(|vt|+ |D2v|) ≤ c?‖v0‖L∞(∂pQ1)

for some universal constant c? > 0. We remark that if F ?(X,x, t) has the
uniform convexity with respect to X variable, the solutions of the fully nonlinear
parabolic equation vt − F (D2v, x0, t0) = 0 are in C2,1, see for instance [15].

For any (x, t), (y, s) ∈ U, we denote

θF?((x, t), (y, s)) := sup
X∈S(n)\{0}

|F ?(X,x, t)− F ?(X, y, s)|
‖X‖

.

This will be used when measuring the oscillation of the operator F ?(X,x, t) with
respect to (x, t). Without loss of generality, we further assume that F (0, ·, ·) ≡ 0
in Q1.

The main result of this paper is following:

Theorem 2.2 (Main Theorem). Assume that Φ ∈ ∆2 ∩ ∇2 and w ∈ Ai(Φ).

Let u be an Lp(n+1)-viscosity solution of (1.1), where p is given in Remark 1.
Suppose that F ?(X,x, t) exists and vt − F ?(D2v, x0, t0) = 0 has C2,1 interior
estimates with constant c? for any (x0, t0) ∈ Q1. Suppose that f ∈ LΨ

w(Q1) with
Ψ(ρ) := Φ(ρn+1). Then there exists a constant δ = δ(n, λ,Λ,Φ, w, c?) > 0 such
that if (∫

−
Qr(x0,t0)

θF?((x, t), (x0, t0))n+1 dxdt

) 1
n+1

≤ δ

for any parabolic cylinder Qr(x0, t0) ⊂ Q1 with r > 0, then ut, D
2u ∈ LΨ

w(Q 1
2
)

with the estimate

‖ut‖LΨ
w(Q 1

2
) + ‖D2u‖LΨ

w(Q 1
2

) ≤ c
(
‖f‖LΨ

w(Q1) + ‖u‖L∞(Q1)

)
(2.4)

for some c = c(n, λ,Λ,Φ, w, c?) > 0.

3. Proof of main theorem

Let U be a bounded domain in Rn+1. For a constant M > 0, we say that P
is a paraboloid of aperture M if

P (x, t) = a+ bx+ c

(
|x|2

2
+ t

)
where |a|+ |b|+ |c| ≤M . For a continuous function v : U → R, we define

GM (v, U) :=

(x0, t0) ∈ U :
there is a paraboloid P of aperture M

such that P (x0, t0) = v(x0, t0),
P (x, t) ≤ v(x, t) for any (x, t) ∈ U


and

GM (v, U) :=

(x0, t0) ∈ U :
there is a paraboloid P of aperture M

such that P (x0, t0) = v(x0, t0),
P (x, t) ≥ v(x, t) for any (x, t) ∈ U

 .
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We define AM (v, U) := U \ GM (v, U) and AM (v, U) := U \ GM (v, U). We
denote

GM (v, U) := GM (v, U) ∩ GM (v, U) and AM (v, U) := AM (v, U) ∩ AM (v, U).

We further denote

Θ(v, U)(x, t) := sup{Θ(v, U)(x, t),Θ(v, U)(x, t)},

where

Θ(v, U)(x, t) := inf{M > 0: (x, t) ∈ GM (v, U)},

Θ(v, U)(x, t) := inf{M > 0: (x, t) ∈ GM (v, U)}.
Then we see that both integrabilities of vt and D2v depend on the function Θ.
The following lemma is the modified parabolic version of [1, Lemma 3.4]. This
can be proved by the same way as in the proof of [1, Lemma 3.4].

Lemma 3.1. Assume that Φ ∈ ∆2 ∩∇2 and w ∈ Ai(Φ). Let u be a continuous
function in U . For r > 0, we define

Θ(u, r)(x, t) := Θ(u, U ∩Qr(x, t))(x, t) for (x, t) ∈ U.

If Θ(u, r) ∈ LΦ
w(U), then we have ut, D

2u ∈ LΦ
w(U) with the estimate

‖ut‖LΦ
w(U) + ‖D2u‖LΦ

w(U) ≤ c‖Θ(u, r)‖LΦ
w(U)

for some c = c(Φ) > 0.

One of our main tools is the Hardy-Littlewood maximal function which is
defined on the Lebesgue space L1

loc(Rn+1) by

Mg(y, s) = sup
r>0

∫
−
Kr(y,s)

|g(x, t)| dxdt.

for (y, s) ∈ Rn+1. Here, Kr(y, s) :=
∏n
i=1

(
yi − r

2 , yi + r
2

)
× (s − r2, s] is the

open parabolic cube in Rn+1 centered at (y, s) = (y1, . . . , yn, s) ∈ Rn × R with
side-length r > 0. For simplicity, we denote Kr ≡ Kr(0, 0) from now on.

As mentioned before, we consider the following boundedness of the maximal
function M on the weighted Orlicz spaces, see [11, 12] for its proof and more
details.

Lemma 3.2. Assume that Φ ∈ ∆2 ∩ ∇2 and w ∈ Ai(Φ). Then for any g ∈
LΦ
w(Rn+1), we have∫
Rn+1

Φ(|g|)w(x, t) dxdt ≤
∫
Rn+1

Φ (Mg)w(x, t) dxdt ≤ c
∫
Rn+1

Φ(|g|)w(x, t) dxdt

where a constant c > 0 is independent of g.

Classical measure theory and basic properties of the N -function Φ imply the
following lemma, see [2, Lemma 4.6] for its proof and more details.
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Lemma 3.3. Assume that Φ ∈ ∆2 ∩∇2 and w ∈ Aq for some 1 < q <∞. Let
η > 0 and S > 1 be constants. Then for any nonnegative measurable function
g in U ⊂ Rn+1, we have that

g ∈ LΦ
w(U) if and only if T :=

∑
j≥1

Φ(Sj)w
(
{(x, t) ∈ U : g(x, t) > ηSj}

)
<∞

and moreover,

1

c
T ≤

∫
U

Φ(|g|)w(x, t) dxdt ≤ c (w(U) + T ),

where c > 0 is a constant depending only on η, S,Φ(1), q, and [w]q.

To prove our main result, the following power decay estimates are needed for
AM , see [6, Proposition 4.5] for its proof and more details.

Lemma 3.4. Let U be a bounded domain with Q8
√
n ⊂ U. Let u ∈ C(U) be a

C-viscosity solution of

ut − Fµ(D2u, x, t) = f(x, t) in Q8
√
n

with ‖u‖L∞(Q8
√
n) ≤ 1. Suppose that F ?(X,x, t) exists and ut−F ?(D2v, x0, t0) =

0 has C2,1 interior estimates with constant c? for any (x0, t0) ∈ Q8
√
n. For any

ε ∈ (0, 1), there exist M = M(n, c?) > 1 and δ = δ(n, λ,Λ, c?, ε) > 0 such that
if µ+ ‖f‖Ln+1(Q8

√
n) ≤ δ and(∫
−
Qr(x0,t0)

θF?((x, t), (x0, t0))n+1 dxdt

) 1
n+1

≤ δ

for any ball Qr(x0, t0) ⊂ Q8
√
n with r > 0, then extending f by zero outside

Q8
√
n, for j = 0, 1, 2, . . . , we have∣∣AMj+1(u,Q8

√
n) ∩K1

∣∣
≤ ε

∣∣(AMj (u,Q8
√
n) ∩K1

)
∪
{

(x, t) ∈ K1 : M(fn+1)(x, t) ≥ (ηM i)n+1
}∣∣

for some constant η = η(n, λ,Λ, c?, ε) > 0.

We obtain the weighted measure version of Lemma 3.4 by applying the above
lemma 3.4 and taking account into the properties of the Aq weight.

Lemma 3.5. Under the same assumptions as in Lemma 3.4, we further suppose
that w ∈ Aq for some q > 1. For any ε ∈ (0, 1), there exist M = M(n, c?) > 1
and δ = δ(n, λ,Λ, q, c?, w, ε) ∈ (0, 1) such that if µ+ ‖f‖Ln+1(Q8

√
n) ≤ δ and(∫

−
Qr(x0,t0)

θF?((x, t), (x0, t0))n+1 dxdt

) 1
n+1

≤ δ
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for any Qr(x0, t0) ⊂ Q8
√
n with r > 0, then extending f by zero outside Q8

√
n,

for j = 0, 1, 2, . . . , we have

w
(
AMj (u,Q8

√
n) ∩K1

)
≤ εjw(K1) +

j−1∑
i=0

εj−iw
({

(x, t) ∈ K1 : M(fn+1)(x, t) ≥ (ηM i)n+1
})

for some constant η = η(n, λ,Λ, c?, ε) > 0.

Proof. Let ε ∈ (0, 1) and choose δ = δ(n, λ,Λ, c?, ε) > 0 as in Lemma 3.4 with ε

replaced by
(
ε
γ1

) 1
γ2

where γ1, γ2 are the constants depending only on n, q and

[w]q in Lemma 2.1. Setting D1 := AMj+1(u,Q8
√
n) ∩K1 and

D2 :=
(
AMj (u,Q8

√
n) ∩K1

)
∪
{

(x, t) ∈ K1 : M(fn+1)(x, t) ≥ (ηM j)n+1
}

for j = 0, 1, 2, . . . , we then have that |D1| <
(
ε
γ1

) 1
γ2 |D2| from Lemma 3.4.

Then Lemma 2.1 yields that

w(D1)

w(D2)
≤ γ1

(
|D1|
|D2|

)γ2

< γ1

(
ε

γ1

) γ2
γ2

= ε,

which directly implies that

w
(
AMj+1(u,Q8

√
n) ∩K1

)
≤ εw

(
AMj (u,Q8

√
n) ∩K1

)
+ εw

({
(x, t) ∈ K1 : M(fn+1)(x, t) ≥ (ηM j)n+1

})
for j = 0, 1, 2 . . . . Hence, by iterating these estimates, the desired estimates
hold. �

We are now ready to prove the main result of this paper.

Proof of Theorem 2.2. It suffices to obtain the desired estimates (2.4) for C-
viscosity solutions u of (1.1) assuming that F and f are continuous in all
variables by using the same approximation procedure as in the proofs of [7,
Theorems 4.1, 4.5].

Given the N -function Φ, we denote Ψ(t) = Φ(tn+1) for t ∈ [0,∞). Then it is
clear that Ψ is also an N -function satisfying ∆2∩∇2-condition and i(Ψ) = (n+
1) i(Φ). By the monotonicity property, we further see that w ∈ Ai(Φ) ⊂ Ai(Ψ).

Without loss of generality, we fix (x0, t0) = (0, 0). Choose a small constant

r ∈
(

0, 1
16
√
n

)
which will be selected later and set

L :=
1

δ
‖f‖LΨ

w(Q8r
√
n) +

1

r2
‖u‖L∞(Q8r

√
n)

where δ = δ(n, λ,Λ, c?,Φ, w, ε) ∈ (0, 1) is the same as in Lemma 3.5. Here ε will
be determined later.
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We define w̃(x, t) := w(rx, r2t) and ũ(x, t) := µ
Lr2u(rx, r2t). It is clear that

w̃ ∈ Ai(Φ). We observe that ũ is a solution to

ũt − F̃µ(D2ũ, x, t) = f̃(x, t) in Q8
√
n

where

F̃µ(X,x, t) :=
1

L
Fµ(LX, rx, r2t) =

µ

L
F
(L
µ
X, rx, r2t

)
and f̃(x, t) :=

µ

L
f(rx, r2t).

We set µ := δ
2 and then note that ‖ũ‖L∞(Q8

√
n) ≤ µ < δ ≤ 1 and ‖f̃‖LΨ

w(Q8
√
n) ≤

1.
We recall w ∈ Ap where p is given in Remark 1. By the same argument as

in the proof of Theorem 2.8 in [17] (or see [2, Lemma 4.1]) with the fact that

‖µfδL‖LΨ
w(Q8

√
n) ≤ 1, we have that

‖f̃‖n+1
Ln+1(Q8

√
n) ≤ c δ

n+1

(∫
−
Q8r
√
n

∣∣∣µf
δL

∣∣∣p(n+1)

w dxdt

) 1
p
(∫
−
Q8r
√
n

w−
1
p−1 dxdt

) p−1
p

≤ c δn+1[w]
1
p
p

(
1

w(Q8r
√
n)

∫
Q8r
√
n

∣∣∣µf
δL

∣∣∣p(n+1)

w dxdt

) 1
p

≤ c µδn+1Φ−1

(
1

w(Q8r
√
n)

∫
Q8r
√
n

Φ
(∣∣∣µf
δL

∣∣∣n+1)
w dxdt

)
≤ c δn+1

for some constant c = c(n,Φ, w) > 0. One can check that the operator F̃ satisfies
all the hypotheses in Lemma 3.5. Therefore, applying Lemma 3.5, we obtain

w̃
(
AMj (ũ, Q8

√
n) ∩K1

)
≤ εjw̃(K1) +

j−1∑
i=0

εj−iw̃
(
{(x, t) ∈ K1 : M(f̃n+1)(x, t) ≥ (ηM i)n+1}

) (3.1)

for some universal constants M > 1 and η > 0.
By Φ ∈ ∆2, we see Φ(Mn+1ρ) ≤ κΦ(ρ) for any ρ > 0 and for some constant

κ = κ(n,M) > 0. We iterate this inequality to discover Φ(M `(n+1)) ≤ κ`Φ(1)
for each ` ≥ 1. We also see that Φ(M `(n+1)) ≤ κ`−mΦ(Mm(n+1)) for any 0 ≤
m ≤ `− 1. Therefore it follows from (3.1) that∑
`≥1

Ψ(M `)w̃
(
AM`(ũ, Q8

√
n) ∩K1

)
=
∑
`≥1

Φ(M `(n+1))w̃
(
AM`(ũ, Q8

√
n) ∩K1

)
≤ Φ(1)w̃(K1)

∑
`≥1

(κε)
`

+
∑
`≥1

(κε)
`
∑
m≥0

Φ(Mm(n+1))w̃
(
{(x, t) ∈ K1 : M(f̃n+1)(x, t) ≥ (ηMm)n+1}

)
.

(3.2)
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By the assumption that f ∈ LΨ
w(Q1), we note that |f̃ |n+1 ∈ LΦ

w̃(Q8
√
n). Then

we deduce that M(f̃n+1) ∈ LΦ
w̃(Q8

√
n) and∫

Q8
√
n

Φ
(
M(f̃n+1)(x, t)

)
w̃(x, t) dxdt

≤ c
∫
Q8
√
n

Φ
(
|f̃(x, t)|n+1

)
w̃(x, t) dxdt = c

∫
Q8
√
n

Ψ
(
|f̃(x, t)|

)
w̃(x, t) dxdt ≤ c

by taking into account (2.2), Lemma 3.2, and unit ball property with the fact

that ‖f̃‖LΨ
w̃(Q8

√
n) ≤ 1. In turn, if follows from Lemma 3.3 that∑

i≥0

Φ(Mm(n+1))w̃
(
{(x, t) ∈ K1 : M(f̃n+1)(x, t) ≥ (ηMm)n+1}

)
≤ c

∫
K1

Φ
(
M(f̃n+1)(x, t)

)
w̃(x, t) dxdt

≤ c
∫
Q8
√
n

Φ
(
M(f̃n+1)(x, t)

)
w̃(x, t) dxdt ≤ c.

(3.3)

Putting (3.3) into (3.2) and taking ε such that κε ≤ 1
2 , we obtain that∑

`≥1

Ψ
(
M `
)
w̃
(
AM`(ũ, Q8

√
n) ∩K1

)
≤
(

Φ(1)w̃(K1) +
c

rn+2

)∑
`≥1

(κε)
` ≤ c.

At this stage the small constant δ = δ(n, λ,Λ, c?,Φ, w) is determined. From the
definition of Θ, we then obtain∑

`≥1

Ψ(M `) w̃
(
{(x, t) ∈ Q 1

2
: Θ(ũ, Q 1

2
)(x, t) > M `}

)
≤
∑
`≥1

Ψ(M `) w̃
(
AM`(ũ, Q 1

2
)
)
≤
∑
`≥1

Ψ(M `) w̃
(
AM`(ũ, Q8

√
n) ∩K1

)
≤ c

for some constant c = c(n, λ,Λ, c?,Φ, w) > 0. Therefore Lemma 3.3 allows us
to discover∫

Q 1
2

Ψ
(

Θ(ũ, Q 1
2
)(x, t)

)
w̃(x, t) dxdt

≤ c

w̃(Q 1
2
) +

∑
`≥1

Ψ(M `) w̃
(
{(x, t) ∈ Q 1

2
: Θ(ũ, Q 1

2
)(x, t) > M `}

) ≤ c
for some constant c = c(n, λ,Λ, c?,Φ, w) > 0. By virtue of Lemma 3.1, we have
‖ũt‖LΨ

w̃(Q 1
2

) + ‖D2ũ‖LΨ
w̃(Q 1

2
) ≤ c‖Θ(ũ, Q 1

2
)‖LΨ

w̃(Q 1
2

) ≤ c, which implies

‖ut‖LΨ
w(Q r

2
) + ‖D2u‖LΨ

w(Q r
2

) ≤ c
(
‖f‖LΨ

w(Q8r
√
n) +

1

r2
‖u‖L∞(Q8r

√
n)

)
.
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Consequently, we apply the standard covering argument to obtain the desired
estimates (2.4) by choosing r sufficiently small so that Q 1

2
is covered by finite

number of cylinders Qr(x0, t0) for (x0, t0) ∈ Q 1
2
. �
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fully nonlinear equations with measurable ingredients, Comm. Pure Appl. Math., 49 (4)
(1996), 365–397.

[6] R. Castillo and E.A. Pimentel, Interior Sobolev regularity for fully nonlinear parabolic

equations, Calc. Var. Partial Differential Equations 56 (2017) no. 5, Art. 127, 26 pp.

[7] M.G. Crandall, M. Kocan, P.-L. Lions, and A. Świȩch, Existence results for boundary
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