• Title/Summary/Keyword: nonlinear wave propagation

Search Result 108, Processing Time 0.021 seconds

Estimation of Hysteretic Interfacial Stiffness of Contact Surfaces

  • Kim, Nohyu
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.33 no.3
    • /
    • pp.276-282
    • /
    • 2013
  • This paper proposes an ultrasonic method for measurement of linear and hysteretic interfacial stiffness of contacting surfaces between two steel plates subjected to nominal compression pressure. Interfacial stiffness was evaluated by the reflection and transmission coefficients obtained from three consecutive reflection waves from solid-solid surface using the shear wave. A nonlinear hysteretic spring model was proposed and used to define the quantitative interfacial stiffness of interface with the reflection and transmission coefficients. Acoustic model for 1-D wave propagation across interfaces is developed to formulate the reflection and transmission waves and to determine the linear and nonlinear hysteretic interfacial stiffness. Two identical plates are put together to form a contacting surface and pressed by bolt-fastening to measure interfacial stiffness at different states of contact pressure. It is found from experiment that the linear and hysteretic interfacial stiffness are successfully determined by the reflection and transmission coefficient at the contact surfaces through ultrasonic pulse-echo measurement.

Wave Transformation with Wave-Current Interaction in Shallow Water (천해역(淺海域)에서 파(波)와 흐름의 상호작용(相互作用)에 의한 파랑변형(波浪變形))

  • Lee, Jong Kyu;Lee, Jong In
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.11 no.2
    • /
    • pp.77-89
    • /
    • 1991
  • Based on Boussinesq equation, the parabolic approximation equation is used to analyse the propagation of shallow water waves with currents over slowly varying depth. Rip currents (jet-like) occur mainly in shallow waters where the Ursell parameter significatly exceeds the range of application of Stokes wave theory. We employ the nonlinear parabolic approximation equation which is valid for waves of large Ursell parameters and small scale currents. Two types of currents are considered; relatively strong and relatively weak currents. The wave propagating over rip currents on a sloping bottom experiences a shoaling due to the variations of depth and current velocity as well as refraction and diffraction due to the vorticity of currents. Numerical analyses for a nonlinear theory are valid before the breaking point.

  • PDF

Numerical Analysis of Nonlinear Effect of Wave on Refraction and Diffraction (파의 굴절 및 회절에 미치는 비선형 효과에 대한 수치해석)

  • 이정규;이종인
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.2 no.1
    • /
    • pp.51-57
    • /
    • 1990
  • Based on second-order Stokes wave and parabolic approximation, a refraction-diffraction model for linear and nonlinear waves is developed. With the assumption that the water depth is slowly varying, the model equation describes the forward scattered wavefield. The parabolic approximation equations account for the combined effects of refraction and diffraction, while the influences of bottom friction, current and wind have been neglected. The model is tested against laboratory experiments for the case of submerged circular shoal, when both refraction and diffraction are equally significant. Based on Boussinesq equations, the parabolic approximation eq. is applied to the propagation of shallow water waves. In the case without currents, the forward diffraction of Cnoidal waves by a straight breakwater is studied numerically. The formation of stem waves along the breakwater and the relation between the stem waves and the incident wave characteristics are discussed. Numerical experiments are carried out using different bottom slopes and different angles of incidence.

  • PDF

Calculation of Wave Deformation and Wave Induced Current around an Underwater Shoal by Boussinesq Equation (Boussinesq 방정식을 이용한 수중 천퇴에서의 파랑변형 및 파랑류 계산)

  • Chun Insik;Seong Sangbong;Kim Guidong;Sim Jaeseol
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.17 no.3
    • /
    • pp.202-212
    • /
    • 2005
  • In the design of an of offshore structure located near an underwater shoal, the same amount of attention given to the wave height may have to be put to the wave induced current as well since some of the wave energy translates to the current. In the present study, two numerical models each based on the nonlinear Boussinesq equation and the linear mild slope equation are applied to calculate the wave deformation and secondly induced current around a shoal. The underwater shoal in Vincent and briggs' experiment (1989) is used here, and all non-breaking wave conditions of the experiment with various monochromatic and unidirectional or multidirectional spectral wave incidences are concerned. Both numerical models clearly showed wave induced currents symmetrically farmed along the centerline over the shoal. The calculated wave heights along a preset line also generally showed very nice agreements with the experimental values.

Effect of Hysteresis on Interface Waves in Contact Surfaces

  • Kim, Noh-Yu;Yang, Seung-Yong
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.30 no.6
    • /
    • pp.578-586
    • /
    • 2010
  • This paper describes a theoretical model and acoustic analysis of hysteresis of contacting surfaces subject to compression pressure. Contacting surfaces known to be nonlinear and hysteretic is considered as a simple spring that has a complex stiffness connecting discontinuous displacements between two solid contact boundaries. Mathematical formulation for 1-D interfacial wave propagation between two contacting solids is developed using the complex spring model to derive the dispersion relation between the interface wave speed and the complex interfacial stiffness. Existence of the interface wave propagating along the hysteretic interface is studied in theory and discussed by investigating the solution to the dispersion equation. Unlike the linear interface without hysteresis, there can exist only one distinct mode of interface waves for the hysteretic interface, which is anti-symmetric motion. The anti-symmetric mode of interface wave propagates with the velocity faster than the Rayleigh surface wave but less than the shear wave depending on the interfacial stiffness. If the contacting surfaces are compressed so much that the linear interfacial stiffness is very high, the hysteretic stiffness does not affect the interface wave velocity. However, it has an effect on the speed of interface wave for a loosely contact surfaces with a relatively low linear stiffness. It is also found that the phase velocity of anti-symmetric wave mode converges to the shear wave velocity in despite of the linear stiffness value if the hysteretic stiffness approaches 0.5.

A Study on Dynamic Characteristics of a Catenary System (가선계의 동특성에 관한 연구)

  • 김정수;최병두
    • Journal of KSNVE
    • /
    • v.9 no.2
    • /
    • pp.317-323
    • /
    • 1999
  • Dynamic characteristics of catenary that supplies electrical power to high-speed trains are investigated. A simple catenary is composed of the contact and messenger wires connected by droppers possessing bi-directional stiffness properties. For slender, repeating structures such as catenary, both the wave propagation and vibration properties need to be understood. The influence of parameters that determine catenary dynamics are investiaged through numerical simulations involving finite element models. The effects of the tension and flexural rigidity of the contact wire is first investigated. The effects of dropper characteristics are then investigated. For linear droppers wave propagation as well as modal properties are determined. For large catenary motion, droppers can be modeled as bi-directional elements possessing low stiffness in compression and high stiffness in tension. For this case, impulse response is computed and compared with the cases of linear droppers. It is found that the catenary dynamics are primarily determined by contact wire tension and dropper properties, with large responses observed in 5∼40 Hz frequency range. In particular, the dropper stiffness and spacing are found to have dominant influence on the response frequency and the wave transmission characteristics.

  • PDF

All-optical signal processing in a bent nonlinear waveguide (굽은 비선형 도파로를 이용한 완전 광 신호 처리 소자)

  • 김찬기;정준영;장형욱;송준혁;정제명
    • Korean Journal of Optics and Photonics
    • /
    • v.8 no.6
    • /
    • pp.492-499
    • /
    • 1997
  • We proposed and studied an all-optical switching device made of a bent nonlinear waveguide and an all-optical logic gate made of a bent nonlinear Y-junction. The proposed devices as switch and a logic function are based on the evolution of nonlinear guided wave along a bent nonlinear waveguide. Since the characteristics of beam propagation depens on the nonlinearity, input power and bent angle of waveguide, the characteristics of output power transmission is calculated by variation the such parameters. Furthermore, by calculating the output power through the nonlinear media with different positions of detector in nonlinear media, we could find the ideal digital switching performance at specific position of detector and implement several all-optical logic functions (AND, OR, XOR) by power contrast between waveguide end and nonlinear media.

  • PDF

Seismic response analysis of layered soils considering effect of surcharge mass using HFTD approach. Part II: Nonlinear HFTD and numerical examples

  • Saffarian, Mohammad A.;Bagheripour, Mohammad H.
    • Geomechanics and Engineering
    • /
    • v.6 no.6
    • /
    • pp.531-544
    • /
    • 2014
  • Studies of earthquakes over the last 50 years and the examination of dynamic soil behavior reveal that soil behavior is highly nonlinear and hysteretic even at small strains. Nonlinear behavior of soils during a seismic event has a predominant role in current site response analysis approaches. Common approaches to ground response analysis include linear, equivalent linear and nonlinear methods. These methods of ground response analysis may also be categorized into time domain and frequency domain concepts. Simplicity in developing analytical relations and accuracy in considering soils' dynamic properties dependency to loading frequency are benefits of frequency domain analysis. On the other hand, nonlinear methods are complicated and time consuming mainly because of their step by step integrations in time intervals. In part Ι of this paper, governing equations for seismic response analysis of surcharged and layered soils were developed using fundamental of wave propagation theory based on transfer function and boundary conditions. In this part, nonlinear seismic ground response is analyzed using extended HFTD method. The extended HFTD method benefits Newton-Raphson procedure which applies regular iterations and follows soils' fundamental stress-strain curve until convergence is achieved. The nonlinear HFTD approach developed here are applied to some examples presented in this part of the paper. Case studies are carried in which effects of some influencing parameters on the response are investigated. Results show that the current approach is sufficiently accurate, efficient, and fast converging. Discussions on the results obtained are presented throughout this part of the paper.

Nonlinear Irregular Waves-current Interaction on Flow Fields with Wave Breaking around Permeable Submerged Breakwater (투과성잠제 주변에서 쇄파를 동반한 불규칙파-흐름장의 상호작용)

  • Lee, Kwang-Ho;Bae, Ju-Hyun;An, Sung-Wook;Kim, Do-Sam
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.30 no.2
    • /
    • pp.39-50
    • /
    • 2018
  • In this study, the nonlinear interaction of irregular waves with wave breaking and currents around permeable submerged breakwater was investigated with the aid of olaFlow model which is open source CFD software published under the GPL license. The irregular wave performance of olaFlow applied in this study was verified by comparing and evaluating the target frequency spectrum and the generated frequency spectrum for applicability to irregular waves. Based on the applicability of this numerical model to irregular wave fields, in the coexistence fields of irregular waves and currents, the characteristics of wave height, frequency spectrum, breaking waves, averaged velocity and turbulent kinetic energy around porous submerged breakwater with the respect to the beach type and current direction versus wave propagation were carefully investigated. The numerical results revealed that the shape of wave breaking on the crown of the submerged breakwater and the formation of the mean flow velocity around the structure depend greatly on the current directions and the type of the beach. In addition, it was found that the wave height fluctuation due to the current direction with respect to the wave propagation is closely related to the turbulent kinetic energy.

Influence of second order wave excitation loads on coupled response of an offshore floating wind turbine

  • Chuang, Zhenju;Liu, Shewen;Lu, Yu
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.12 no.1
    • /
    • pp.367-375
    • /
    • 2020
  • This paper presents an integrated analysis about dynamic performance of a Floating Offshore Wind Turbine (FOWT) OC4 DeepCwind with semi-submersible platform under real sea environment. The emphasis of this paper is to investigate how the wave mean drift force and slow-drift wave excitation load (Quadratic transfer function, namely QTF) influence the platform motions, mooring line tension and tower base bending moments. Second order potential theory is being used for computing linear and nonlinear wave effects, including first order wave force, mean drift force and slow-drift excitation loads. Morison model is utilized to account the viscous effect from fluid. This approach considers floating wind turbine as an integrated coupled system. Two time-domain solvers, SIMA (SIMO/RIFLEX/AERODYN) and FAST are being chosen to analyze the global response of the integrated coupled system under small, moderate and severe sea condition. Results show that second order mean drift force and slow-drift force will drift the floater away along wave propagation direction. At the same time, slow-drift force has larger effect than mean drift force. Also tension of the mooring line at fairlead and tower base loads are increased accordingly in all sea conditions under investigation.