• Title/Summary/Keyword: nonlinear time-varying analysis

Search Result 111, Processing Time 0.027 seconds

New analysis of nonlinear system with time varying parameter

  • Lee, Seon-Ho;Lim, Jong-Tae
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1995.10a
    • /
    • pp.231-235
    • /
    • 1995
  • In this paper, the frozen time approach is used to analyze the nonlinear system with time varying parameter. Using the extended linearization, we propose two analytical methods that compute an upper bound of the Euclidean norm of the difference between state variable and equilibrium point of the given system. The propertise of the two methods are discussed with simple examples.

  • PDF

Compensation of Unknown Time-Varying Sinusoidal Disturbances in Nonlinear Systems using Disturbance Accommodation Technique (외란 보상 기법을 이용한 비선형시스템에서의 미지의 시변 사인파형 외란 보상)

  • Chwa, Dong-Kyoung
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.56 no.10
    • /
    • pp.1844-1851
    • /
    • 2007
  • This paper presents methods for the compensation of sinusoidal disturbances with unknown amplitude, phase, and time-varying frequency in nonlinear systems. In the previous disturbance accommodation methods, the sinusoidal disturbance with unknown time-invariant frequency was considered. In the proposed method, the disturbance with unknown time-varying frequency is compensated. As for the control structure, two control inputs are designed separately in such a way that one of them is designed for the nonlinear system control without considering the disturbance, and the other one uses the disturbance estimate obtained from the disturbance accommodating observer. The stability analysis is done considering the disturbance estimation error and the numerical simulation demonstrates the proposed approach.

Nonlinear time-varying analysis algorithms for modeling the behavior of complex rigid long-span steel structures during construction processes

  • Tian, Li-Min;Hao, Ji-Ping
    • Steel and Composite Structures
    • /
    • v.18 no.5
    • /
    • pp.1197-1214
    • /
    • 2015
  • There is a great difference in mechanical behavior between design model one-time loading and step-by-step construction process. This paper presents practical computational methods for simulating the structural behavior of long-span rigid steel structures during construction processes. It introduces the positioning principle of node rectification for installation which is especially suitable for rigid long-span steel structures. Novel improved nonlinear analytical methods, known as element birth and death of node rectification, are introduced based on several calculating methods, as well as a forward iteration of node rectification method. These methods proposed in this paper can solve the problem of element's 'floating' and can be easily incorporated in commercial finite element software. These proposed methods were eventually implemented in the computer simulation and analysis of the main stadium for the Universiade Sports Center during the construction process. The optimum construction scheme of the structure is determined by the improved algorithm and the computational results matched well with the measured values in the project, thus indicating that the novel nonlinear time-varying analysis approach is effective construction simulation of complex rigid long-span steel structures and provides useful reference for future design and construction.

Non-fragile Guaranteed Cost Control of Uncertain Nonlinear Systems with Time-varying Delays in State and Control Input (시변 시간 지연을 갖는 불확실한 비선형 시스템의 비약성 보장 비용 제어)

  • Kim, Jae-Man;Choi, Yoon-Ho;Park, Jin-Bae
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.61 no.3
    • /
    • pp.459-465
    • /
    • 2012
  • In this paper, we present a non-fragile guaranteed cost control design method for uncertain nonlinear systems with time varying delays in state and control input, even though the controller gain is perturbed. The uncertain nonlinear term in the systems is norm bounded and the linear matrix inequality(LMI) optimization method is employed as a stability analysis of the systems. We design a robust controller and show the asymptotical stability of uncertain time-varying systems based on Lyapunov method. Also, we guarantee a specific level of performance of the systems. The simulations are carried out to demonstrate the effectiveness of the proposed method.

A Stability Analysis Scheme for a Class of First-Order Nonlinear Time-Delay Systems (일종의 일차 비선형 시간 지연 시스템을 위한 안정성 분석 방법)

  • Choi, Joon-Young
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.14 no.6
    • /
    • pp.554-557
    • /
    • 2008
  • We analyze the stability property of a class of nonlinear time-delay systems with time-varying delays. We present a time-delay independent sufficient condition for the global asymptotic stability. In order to prove the sufficient condition, we exploit the inherent property of the considered systems instead of applying the Krasovskii or Razumikhin stability theory that may cause the mathematical difficulty of analysis. We prove the sufficient condition by constructing two sequences that represent the lower and upper bound variations of system state in time, and showing the two sequences converge to an identical point, which is the equilibrium point of the system. The simulation results illustrate the validity of the sufficient condition for the global asymptotic stability.

Robust control of linear systems under structured nonlinear time-varying perturbations I - Analysis

  • Bambang, Riyanto-T.;Shimemura, Etsujiro
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1993.10b
    • /
    • pp.81-87
    • /
    • 1993
  • In this paper robust stability conditions are obtained for linear dynamical systems under structured nonlinear time-varying perturbations, using absolute stability theory and the concept of dissipative systems. The conditions are expressed in terms of solutions to linear matrix inequality(LMI). Based on this result, a synthesis methodology is developed for robust feedback controllers with worst-case H$_{2}$ perforrmance via convex optimization and LMI formulation.

  • PDF

Time Domain Analysis of Roll Response Considering Slowly Varying Nonlinear Excitation

  • Kim, Deok-Hun;Choi, Yoon-Rak
    • Journal of Advanced Research in Ocean Engineering
    • /
    • v.2 no.2
    • /
    • pp.81-85
    • /
    • 2016
  • Nonlinear wave loads can lead to resonant responses of offshore structures in sum or difference frequencies. In this study, the roll motion of an FPSO with a low natural frequency is simulated in the time domain. To generate the time signals of wave loads, the quadratic transfer functions of the second-order excitations are calculated in the frequency domain. The equations of motions based on the time memory functions are used to evaluate the roll responses in irregular waves. The roll damping in empirical form is accounted for in the simulation.

Free Surface Tracking for the Accurate Time Response Analysis of Nonlinear Liquid Sloshing

  • Cho Jin-Rae;Lee Hong-Woo
    • Journal of Mechanical Science and Technology
    • /
    • v.19 no.7
    • /
    • pp.1517-1525
    • /
    • 2005
  • Liquid sloshing displays the highly nonlinear free surface fluctuation when either the external excitation is of large amplitude or its frequency approaches natural sloshing frequencies. Naturally, the accurate tracking of time-varying free surface configuration becomes a key task for the reliable prediction of the sloshing time-history response. However, the numerical instability and dissipation may occur in the nonlinear sloshing analysis, particularly in the long-time beating simulation, when two simulation parameters, the relative time-increment parameter a and the fluid mesh pattern, are not elaborately chosen. This paper intends to examine the effects of these two parameters on the potential-based nonlinear finite element method introduced for the large amplitude sloshing flow.

Transient stochastic analysis of nonlinear response of earth and rock-fill dams to spatially varying ground motion

  • Haciefendioglu, Kemal
    • Structural Engineering and Mechanics
    • /
    • v.22 no.6
    • /
    • pp.647-664
    • /
    • 2006
  • The main purpose of this paper is to investigate the effect of transient stochastic analysis on nonlinear response of earth and rock-fill dams to spatially varying ground motion. The dam models are analyzed by a stochastic finite element method based on the equivalent linear method which considers the nonlinear variation of soil shear moduli and damping ratio as a function of shear strain. The spatial variability of ground motion is taken into account with the incoherence, wave-passage and site response effects. Stationary as well as transient stochastic response analyses are performed for the considered dam types. A time dependent frequency response function is used throughout the study for transient stochastic responses. It is observed that stationarity is a reasonable assumption for earth and rock-fill dams to typical durations of strong shaking.

A hierarchical approach to state estimation of time-varying linear systems via block pulse function (블럭펄스함수를 이용한 시스템 상태추정의 계층별접근에 관한 연구)

  • 안두수;안비오;임윤식;이재춘
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.45 no.3
    • /
    • pp.399-406
    • /
    • 1996
  • This paper presents a method of hierarchical state estimation of the time-varying linear systems via Block-pulse function(BPF). When we estimate the state of the systems where noise is considered, it is very difficult to obtain the solutions because minimum error variance matrix having a form of matrix nonlinear differential equations is included in the filter gain calculation. Therefore, hierarchical approach is adapted to transpose matrix nonlinear differential equations to a sum of low order state space equation from and Block-pulse functions are used for solving each low order state space equation in the form of simple and recursive algebraic equation. We believe that presented methods are very attractive nd proper for state estimation of time-varying linear systems on account of its simplicity and computational convenience. (author). 13 refs., 10 figs.

  • PDF