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Abstracts In this paper, the frozen time approach is used to analyze the nonlinear system with time varying
parameter. Using the extended linearization, we propose two analytical methods that compute an upper bound of the
Euclidean norm of the difference between state variable and equilibrium point of the given system. The properties of

the two methods are discussed with simple examples.
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1. INTRODUCTION

Generally, most engineering systems are modelled by
nonlinear equations. So because the dynamic properties
change according as operating region changes, the classical
methods can’t satisfy the desired performance of given
nonlinear system. Kelemen and Rugh presented stability
results that deal with response of a nonlinear system to
slowly varying input signals by use of the extended
linearization method[1],[2]. But they could not present the
norm bound of the difference between state variable and the
parameterized equilibrium point. Recently, the norm bound
was computed but it used a constant value which is not
definitely defined, and its norm bound is larger than that of
this paper.

This paper proposes two analytical methods for computing
the norm bound. First method gives very small norm bound
values, but it is not adequate for the higher ordered and
complicate nonlinear systems. Another disadvantage is that
the norm bound is related only to the system eigenvalues.
Second method introducing the Kronecker sum does not need
to compute matrix exponential function, so it can reduces the
burdens of calculation. Moreover it relates the norm bound
not only with system eigenvalues but also with system
dimension. But unfortunately it has a little larger norm bound
than the former. Finally, some simple examples are given to
verify the results of this paper.

2. PRELIMINARIES

Given an (nxn) matrix A= {a;}, A{A) denotes the ith
eigenvalue and o(A)=y A (A"A) the
A; the maximum(minimum) singular value is denoted by
Orax (AN 0 min(A)). N Al p=V trace (ATA) indicates the
Frobenius norm of A and | Al ;=06m(A)

ith singular value of

indicates the
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Euclidean matrix norm. Unless | - %, and } - {~ are
mentioned, the symbol | Al will be used to demote § Al ,.
The n’-vector Vec[A)l is the vector composed of the
columns of matrix A taken in order. Given an ( #nx») matrix
B={b;), A®B= {a;B) is the Kronecker product and
ADB= AQI+ B the Kronecker sum, where [ is the nxn
identity matrix. .
Consider some mathematical preliminaries.

(P1) For any nonsingular matrix M, one has

L = ap
(F2) For any matrix S, one has

IShrp=1 VectS] |
(P3) If {(A;}and { #;) are the eigenvalues of A and B
respectively, then { A,+4;} are the eigenvalues of A®B.

3. FORMULATION

The system is described by
() = Ax(H, w(®), x(0) = xo, 20 o))
where x(#H is the nx] state vector and «(#) is the mx]
time varying parameter. We assume that
(H1) f:R"XR™ —-R" is twice continuously differentiable.
(H2) there is a bounded, open set I'CR™ and a
continuously differentiable function x:I' —R" such that for
each constant time varying parameter wel, Ax(w),w)=0.
(H3) there are o6,>0, %>0, and 4,>0 such that for
wel,
Re A, { 0fix(w),w)/dx} < —0gy
kiog< | A { AAx(w), wW)/dx) | < kyay , i=1,2,...,n
(H4) the continuously differentiable time varying parameter
w(#) is norm-bounded by §&>0;
b w(Hl <8
For notational convenience, we let q(8= x(w(p), where

¢(H is the equilibrium trajectory, ie.the extended
equilibrium point. (1) can be rewritten as(Z]
« )= A(e() +R(He() + B(t) ul 1) (2

where



e = x(H—q(d)
A = 3Rx, w)ox| ooy
B.(H = fx,w)ow) .-, (3)
B(t) = A{DB.(D
R(H = ﬁgq, w, x)

fo(z@(q+0(x—q),1v)—ﬁ(a. w))d6
By (Hl) and (H2), there exist positive constants K, and

Kg such that [2]

ITAMDN =Ka, 1 BOI <Ky t2g 4

4. METHOD- 1

Lemma 1 If A(x,w) satisfies Lipschitz condition for
xe€DCR", then there exists a finite constant L. such that

| Rqwal = E el (5)

Proof : Applying the Lipschitz condition gives

| A(q+8(x~q), w)— Alg,w) | < Lal(qg+8(x—a))—al
Lyl &(x—a)l
8L el

Therefore using (3),
| Rawdl < [ | Alq+bx—a). w)~ Alq,u) | do

1
< [OLalelds
_ La
== I el

Consider P(#) which transforms A(# into diagonal matrix
A(). Using the frozen time approach, we can say that there
exists P(H which satisfies A()=PHAMDPY(H or
A(DP(H=P(HA($). Assume that there exists a constant /;>0
such that o
IAOPHI < TAMWIT F A

< Bl PO AWM
Therefore

I A = A1 ()]
can be obtained.

Lemma 2 There exists a finite constant K4, such that

VAN <K4 0
where C
_ [ kgoy Comy=1
KA—[h1(1+k20‘0) D omy22 ®)

and =, is the dimension of the largest Jordan block of A().
Proof : 1) For n,=1, Ko = hiko, [3]

ll) For n,22,

AB o - 0
Ap=| ¢ AHO- 0 1<p<n ©
0 0 C A
where A;(f, 1<i<p are Jordan blocks. Consider. the

maximum Jordan block A,(#),

aH 1 0 - 0
0 a1 - 0
A= - (10)
0 0 g - 1
0 0 0 - aiP
Since the eigenvalue of A,;(0 satisfies

koy < | a)(8) | < ko from (H3), we can obtain

A mi A

<
< a1 AD I AN =
<

Y AN A0«
(1 +ky0p)
]

Note that A()=POHAP D rewritten as
ANHPH=P1 A7'(s), and assume that there exists a
constant k;>0, such that
TAT'DPDHI < VAT ) P(f)lll
< UPOIT A DI

can be

Therefore
AT DT <kl AN (D (1)
can be obtained.
Lemma 3 There exists a finite constant Kp, such that

| B{t)| <Kg (12)
where :
_ e bl Ni
KB—hZWB,Z:]( 10 (13
and
B ) <Ws . (14)
Proof : i) For n;=1, Kg=lkz& [3]
100
i) For »n;=2
The inverse matrix of the maximum Jordan block of A(? is
‘} :1 (__1) i+l
a;(0  ( a;(D)° OK
0 1 (="
a;(9) Cap™ |
: 1 :
AN =] o 0 S )
( a; ()
: S
0 0 D
. 1 1 1 :
= < .
Using *aty <| O | %150 obtained from (H3),
A7) <kl A
a1l AW A0 w

i

Y1 AT A7
o1 i
=k -‘gl( klao)
Finally using (3),
1BON < 1A' D I I BLDI
A1 i
< hg%igl( klao) N
The following quadratic form will be used extensively in
the sequel. Let

V(2 e ) =T (D QDA (16)
A= _!(;me'qy“)'e Albrgy an
Note that @(# is well defined, continuously differentiable,

unique positive definite solution of

ATHAY+ADA(H=—1 (18)
Taking the exponential operation of A(f)=P(DA(HP (D
gives e P =P(e . Assume that
constant h3>0, such that

Fe® Rl < e P8
< Bl PO e A7)

there exists a

Therefore
Fet™ ) < hylle A7) (19)
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can be obtained.
Lemma 4 There exist finite constant M2, >0, such that

mledl? < Wted) < Mllen]? (20)
where
_ 1
"= 5K, (21)
_ s s (1+7=2)!
M= B2 2 GG (2ay T
. _ 1
Proof : 1) u = T [22]
. h:
m) i) For ny=1, M, = 2;0 [3]
ii) For n;22,
The exponential of the maximum Jordan block of A(#) is,
e . e z_(m‘"l)e aifr
(ﬂ/_l)!
. -2 alor
0 allr T e
(n,—2)!
(n,-3)_ a;(hr
A _ T e
e = 0 0 (”!_3)! (22)
0 0 e T
Since Re{ a;(} < —o, from (H3), therefore
He® ) < hyle ™|
< by 1™, 1™

By e V0 e ™)
ot "y z,i—l
hse ™ & Ty

S

"

Finally,
Wte(d) < 11 I e(n]®
< [ ore® i

00 ~20r ", % i+j-2
< k[ e R gDy a1
- p29 (i+j—2 2
= h ,gl,-l G—IG- D1 (2ep) T reol

]
Theorem 1 Suppose the system satisfies (H1), ..., (H4).
Then | (2§ satisfies

N,
- 1
ne(t)usue(om/—f,’—l‘e Wy 4 r20 @3)
if following conditions are satisfied
1) 10l <a,
(2) 1-26 M®Kp > 0 (24)
(3) —88KpL 4 M2+ 641 ~46Kp M\ +48°K% M\*) > 0
Proof : Differentiating W(t, e(#) with respect to ¢ and

appling (1) give

Vi e(f) = —e"(De(d) +e"() ADel ) ,
+2e (D UHR(De(H +2e” (D QUOB(H w( )

I A I <Epl w(HI[2], | DI <2 MK,
| Q8 <M, we obtain

DI+ XD heD)?

+20 QD1 I RHY I eDI®

F20 QDN ILBON Neleyll | w(H Il

~(1-28 MKl DI P+ M Lall e
+20M, Kl e(t) |

—(1-01-25 MEKp) 1 elDN 2+ M Lol (D1 ®
—-6(1-28 MIZKD) | el 2+23M1KB" e(t)
=Nl e(D1 2+ W(elD)

where 0<8<1 and

N (1-6) (1256 M2K)p)
Wile(d) = MLaleD) 80128 M°Kp) |l (D] ?
+26M Kl e(9) |

If ND>0 and W(e())<0 are guaranteed,

Using Lemma 1,
I w(o) I [2],
(¢, e( D)

and

<

(25)

then it always

satisfies
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Wte)<—Nledl?® (26)
Therefore, Wi(e(#H) can be rewritten as
Wile(D)= e (leH —a)( |l DN —ay) (27)
where
601 —28M°K p) Ty ~88K pL JM° + 67(1 —4 8K ,M* +ASKOMY)
21z= 2L M
If  (1-28M°Kp)>0 and  { —88KeLa M*+6°(1 —48K, My*

+48°KL MY} >0 are satisfied, then and will be
guaranteed to be positive real constants and 13{2 le()l will

| l0) | <a,. From (20) and

a, as

be equal to or less than a, for
(26)

M,
wmledh? < Vit eh) < VO, e0)e ™ (28)
can be obtained{4]. Finally, by comparing (20) with (28) we
can obtain

N
mledl? < Ve e()) < Mlle0)l e ™ 29)
M,
lehl <l e(0)n\/#—l'e ' (30)

We can guarantee (30) only if lim fe(Dll <a, is satisfied. So
generally we can write the norm bound of e(#) as

M, -
lelHl <l e0) \/7?1]’2 4 e, 20 @D

5. METHOD-1II : Kronecker Sum

Lemma 5 There exists a finite constant K¢, such that

I (ADDAD) | <K (32)
where .
Kc=hs f?l( 2k,0, ) (33)
Proof : Define
H(t) = A(HDA() (34)
By a frozen time approach, the matrix H(#) can be
transformed into A(N=P (HH(HP(H, and it follows

HY(HP(=Pp B (. Assume that there exists a finite
constant k>0 which satisfies
VH Y HPHE = IH () IIP(f)lII
< RIPHILLE B (DI

Therefore it follows

VH DN <hd B (35)
i) For n;=1,
1
El(t) 0 0
1
aip=| 0 (D) 0 (36)
0 0 7u(D
where  A;(H, i=1,...,n are eigenvalues of H(#. Using

2kioo< | k(D | <2ky0, obtained from (H3) and (F3),

R B
hf Aax { C H ()T H (D)
h

4
2k]0’0

I H

I

ii) For »;=2,

The inverse matrix of the maximum Jordan block of A(#) is



() R(9)? B
0 1 e (=D
k(D) CRy™ !
n,—1
o _
2= o 0 Cin (37
| O i
0 0 hy(D
Finally,
THYD <kl B
<kl B'OI B Dl
= 4\/ I H,"(:) WA
< mE(gig)
L |
Lemma 6 There exist finite constants M,>u,>0, such
that
pledI? < Vit e(d) £ Myl D) ?
where
1
#2 = R, (38)
M, = VK
Proof :

I) Using (16), (18), e"(HQDe(D2Anin( D) I (D%, and
Umin(Q(t))ZTH—A}W [51,

Vit e(D) = Amn(QD) N elB)]?
1
> g Iefd 2

Define
=1
H2= 2K 4
O) (18) can be rewritten as[5],
Vec [ QD] =—(AT(DBAT(D)) 'Wec 1) (39)

Using mathematical preliminaries and Lemma 5,

TaoHl < 1D ¢
= | Vecl 1]
< | (AT(t)@AT(t)) N e
= VnK,
and
Vite(D) < QDI Fe(H]l?
< VaKeletl®

Therefore we can obtain

M, = ke -

Theorem 2 Suppose the system satisfies (H1), ..., (H4).
Then | &(#) | satisfies

My, -t
el < e0)l T:e M4 b, 120 (40)

if following conditions are satisfied

(1) e(O) <ty

(2) 1-2Va Ki2Kpa > 0

(3) —8n8LAKg K+ (1 -4V n K Kpa+4n Kb Kpa®) > 0
Proof : Assume that there exists a finite constant Kpa,

such that

WA I <Kpa (41)
By wusing Lemma 5 and 1), | Q) <2Vl (A
@A) 'I71 A1 [5] can be rewritten as

I X)) <2V K2 Kpa (42)
Since | QAN <VnKc and | 0 | <2V 5 K&EKna,

Wit e()) = —e ;t)e(t)+e’(t)o(:)e<t)+2e (DQDR(De(D
+2e (t)Qgt)B(t)w(t)
< — eI +I XD led]?
20 QDN URHI el ?
+21 AL 1 BH D) le(t I .
< —(1-2Vn KFKp) e D) 2 +V nKcLall e

+2V ndK Kpl () |

= —(1-0Q-2Vn KEKpa) l el ) || 2
VaKcLal D1 °—8(1-2Vn K2 Kp) 1 D ) 2
+2V ndK oKyl D) |

= =Nyl e Dl 2+ Wyle()

As the same way,

No=(1-8)(1-2Vn K" Kpa) (43)
and
Wi(e(9)) = YnKcLall )| *—8(1—2Vn KEKp) | el D 1) 2
+2V n8K Kl oD |
= lel (bl =) Nl —bs)
where
A 81 -2V n K Kpa)
12 = 2 nLAKc
\/ —8n8L 4K Kt + 071 =4V 0 K Kpa+4n K& Kpa)

WnL K

The main idea of this proof has been illustrated so far, and
the remaining part of it is the same as that of Theorem 1.

6. EXAMPLE

We introduce a simple example that will illustrate results
of this paper. Consider the plant given by
£1(0 = =100 (H+ 22D +u(d) (44)
(D = xF()—me()— 2
where u{#$=sin(243) and m 1is a constant value in the
range of 5<m<10.. The plant satisfies (H1)- (H#4), and, the
plant’s family of equilibrium poinf is given by x;(w)=w/10
and x(w)=0. Tablel and Table.2 show the results of
analysis by method- 1 and method-H. We can confirm that

method 1 gives the smaller norm bound of the steady state
error.

TABLE 1. Result by method-1 (#=0.99)

m Kp Ky M a ap

5 | 0.2001 | 0.2000 0.1000 0.0272 4.9096
6 | 01667 | 0.2000 0.0834 0.0188 5.9054
7 | 01429 | 0.2000 0.0715 0.0138 6.8998
8 | 01251 | 0.2000 0.0625 0.0106 7.9012
9 | 01112 | 0.2000 0.0556 0.0083 8.8872
10 | 0.0556 | 0.2000 0.0221 0.0017 22.3936

TABLE 2. Result by method-T ( #=10.99)

m KDA KD I/KC bl bg

5 | 01333 | 0.2001 9.9968 0.0387 3.4472
6 | 01333 | 0.1667 | 11.9957 | 0.0267 4.1610
7 101333 | 01429 | 13.9940 | 0.019 4.8692
8 1 01333 | 01251 | 159906 | 0.0150 5.5738
9 | 01333 | 01112 | 17.9807 | 0.0118 6.2744
10 | 01333 | 0.0556 | 19.8005 | 0.0054 6.9185

7. CONCLUSION
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The analysis results discussed here present the frozen time
approach to compute the norm bound of the difference
between state variable and the parameterized equilibrium
point. That is to say, the norm bound can be composed of
both a exponentially decaying term and a constant term.
Method- 1 shows the norm bound is related only with
system eigenvalues, but that of method-II has more
information, l.e., not only system eigenvalues but also system
dimension. Another difference is that the former has smaller
norm bound than the latter, but the latter need not to

calculate || 7|

which will be difficult to compute if the
system complexity increases. More study is need in reducing
the norm bound precisely and relating it with more system

information.
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