• Title/Summary/Keyword: nonlinear systems control

Search Result 2,435, Processing Time 0.029 seconds

Hardware Implementation of an Intelligent Controller with a DSP and an FPGA for Nonlinear Systems (DSP와 FPGA를 이용한 지능 제어기의 하드웨어 구현)

  • 김성수
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.10 no.10
    • /
    • pp.922-929
    • /
    • 2004
  • In this paper, we develop control hardware such as an FPGA based general purposed intelligent controller with a DSP board to solve nonlinear system control problems. PID control algorithms are implemented in an FPGA and neural network control algorithms are implemented in a BSP board. An FPGA was programmed with VHDL to achieve high performance and flexibility. The additional hardware such as an encoder counter and a PWM generator can be implemented in a single FPGA device. As a result, the noise and power dissipation problems can be minimized and the cost effectiveness can be achieved. To show the performance of the developed controller, it was tested fur nonlinear systems such as a robot hand and an inverted pendulum.

Fuzzy Neural Network Active Disturbance Rejection Control for Two-Wheeled Self-Balanced Robot

  • Wang, Chao;Jianliang, Xiao;Zhang, Cheng
    • Journal of Information Processing Systems
    • /
    • v.18 no.4
    • /
    • pp.510-523
    • /
    • 2022
  • Considering the problems of poor control effect, weak disturbance rejection ability and adaptive ability of two-wheeled self-balanced robot (TWSBR) systems on undulating roads, this paper proposes a fuzzy neural network active disturbance rejection controller (FNNADRC), that is based on fuzzy neural network (FNN) for online correction of active disturbance rejection controller (ADRC)'s nonlinear control rate. Firstly, the dynamic model of the TWSBR is established and decoupled, the extended state observer (ESO) is used to compensate dynamically and linearize the upright and displacement subsystems. Then, the nonlinear PD control rate and FNN are designed, and the FNN is used to modify the control parameters of the nonlinear PD control rate in real time. Finally, the proposed control strategy is simulated and compared with the traditional ADRC and fuzzy active disturbance rejection controller (FADRC). The simulation results show that the control effect of the proposed control strategy is slightly better than ADRC and FADRC.

Development of the Position Control Algorithm for Nonlinear Overhead Crane Systems (비선형 천장 크레인시스템의 위치제어 알고리즘 개발)

  • 이종규;이상룡
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.4
    • /
    • pp.142-147
    • /
    • 2000
  • An overhead crane system which transports an object by girder motion, trolley motion, and hoist motion becomes a nonlinear system because the length of a rope changes. To develope the position control algorithm for the nonlinear crane systems, we apply a nonlinear optimal control method which uses forward and backward difference methods and obtain optimal inputs. This method is suitable for the overhead crane system which is characterized by the differential equation of higher degree and swing motion. From the results of computer simulation, it is founded that the position of the overhead crane system is controlled, and the swing of the object is suppressed.

  • PDF

A Poof of Utkin's Theorem for SI Uncertain Nonlinear Systems (단일입력 불확실 비선형 시스템에 대한 Utkin 정리의 증명)

  • Lee, Jung-Hoon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.66 no.11
    • /
    • pp.1612-1619
    • /
    • 2017
  • In this note, a complete proof of Utkin's theorem is presented for SI(single input) uncertain nonlinear systems. The invariance theorem with respect to the two nonlinear transformation methods so called the two diagonalization methods is proved clearly, comparatively, and completely for SI uncertain nonlinear systems. With respect to the sliding surface and control input transformations, the equation of the sliding mode i.e., the sliding surface is invariant, which is proved completely. Through an illustrative example and simulation study, the usefulness of the main results is verified. By means of the two nonlinear transformation methods, the same results can be obtained.

An Approach to a Formal Linearization toy Time-variant Nonlinear Systems using Polynomial Approximations

  • Komatsu, Kazuo;Takata, Hitoshi
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2002.10a
    • /
    • pp.52.2-52
    • /
    • 2002
  • In this paper we consider an approach to a formal linearization for time-variant nonlinear systems. A time-variant nonlinear sysetm is assumed to be described by a time-variant nonlinear differential equation. For this system, we introduce a coordinate transformation function which is composed of the Chebyshev polynomials. Using Chebyshev expansion to the state variable and Laguerre expansion to the time variable, the time-variant nonlinear sysetm is transformed into the time-variant linear one with respect to the above transformation function. As an application, we synthesize a time-variant nonlinear observer. Numerical experiments are included to demonstrate the validity of...

  • PDF

Robust Pole Placement for Structured Uncertain Systems (구조화된 불확실성이 있는 시스템의 강인한 극배치 제어)

  • 이준화
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.5 no.1
    • /
    • pp.11-15
    • /
    • 1999
  • In this paper, a robust pole placement controller for time invariant linear systems with polytopic uncertainties is presented. The proposed controller is a fixed order output feedback controller which stabilizes the uncertain systems and satisfies the constraints on the closed-loop pole location. The proposed controller can be obtained by minimizing a certain nonlinear object function subject to linear matrix inequality constraints. An algorithm for solving the nonlinear optimization problem is also proposed.

  • PDF

Control of Nonlinear System with a Disturbance Using Multilayer Neural Networks

  • Seong, Hong-Seok
    • Transactions on Control, Automation and Systems Engineering
    • /
    • v.2 no.3
    • /
    • pp.189-195
    • /
    • 2000
  • The mathematical solutions of the stability convergence are important problems in system control. In this paper such problems are analyzed and resolved for system control using multilayer neural networks. We describe an algorithm to control an unknown nonlinear system with a disturbance, using a multilayer neural network. We include a disturbance among the modeling error, and the weight update rules of multilayer neural network are derived to satisfy Lyapunov stability. The overall control system is based upon the feedback linearization method. The weights of the neural network used to approximate a nonlinear function are updated by rules derived in this paper . The proposed control algorithm is verified through computer simulation. That is as the weights of neural network are updated at every sampling time, we show that the output error become finite within a relatively short time.

  • PDF

Robust Control of Robot Manipulator with Actuators

  • Jongguk Yim;Park, Jong-Hyeon
    • Journal of Mechanical Science and Technology
    • /
    • v.15 no.3
    • /
    • pp.320-326
    • /
    • 2001
  • A Robust controller is designed for cascaded nonlinear uncertain systems that can be decomposed into two subsystems; that is, a series connection of two nonlinear subsystems, such as a robot manipulator with actuators. For such systems, a recursive design is used to include the second subsystem in the robust control. The recursive design procedure contains two steps. First, a fictitious robust controller for the first subsystem is designed as if the subsystem had an independent control. As the fictitious control, a nonlinear H(sub)$\infty$ control using energy dissipation is designed in the sense of L$_2$-gain attenuation from the disturbance caused by system uncertainties to performance vector. Second, the actual robust control is designed recursively by Lyapunovs second method. The designed robust control is applied to a robotic system with actuators, is which the physical control inputs are not the joint torques, but electrical signals to the actuators.

  • PDF

SYNTHESIS OF DISCRETE TIME FLIGHT CONTROL SYSTEM USING NONLINEAR MODEL MATCHING

  • Aoi, Kazunari;Osa, Yasuhiro;Uchikado, Shigeru
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.460-460
    • /
    • 2000
  • Until now various model matching systems have been proposed for linear system, but very little has been done for nonlinear system In this paper, a design method of discrete time flight control system using nonlinear model matching is proposed. This method is based on Hirschorn's algorithm and facilitates easy determination of the control law using the relationship, between the output and the input, which is obtained by the time shift of the output. Also as a result, this method is the extension of the linear model matching control system proposed by Wolovich, in which the control law is obtained by left-multiplying the output by the interactor matrix. At the end of paper, the proposed control system is applied to CCV flight control system of an aircraft and the feasibility of the proposed approach is shown by the numerical simulations.

  • PDF

SDRE Based Nonlinear Optimal Control of a Two-Wheeled Balancing Robot (SDRE 기법을 이용한 이륜 밸런싱 로봇의 비선형 최적제어)

  • Kim, Sang-Tae;Kwon, Sang-Joo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.17 no.10
    • /
    • pp.1037-1043
    • /
    • 2011
  • Two-wheeled balancing mobile robots are currently controlled in terms of linear control methods without considering the nonlinear dynamical characteristics. However, in the high maneuvering situations such as fast turn and abrupt start and stop, such neglected terms become dominant and greatly influence the overall driving performance. This paper addresses the SDRE nonlinear optimal control method to take advantage of the exact nonlinear dynamics of the balancing robot. Simulation results indicate that the SDRE control outperforms LQR in the respect of transient performance and required wheel torques. A design example is suggested for the state matrix that provides design flexibility in the SDRE control. It is shown that a well-planned state matrix by reflecting the physics of a balancing robot greatly contributes to the driving performance and stability.