• Title/Summary/Keyword: nonlinear storage equation

Search Result 31, Processing Time 0.026 seconds

An Analysis of Dynamic Behavior of Fluid Dynamic Bearing for Hard Disk Drive Spindle Motor

  • Song, Young-Han;Yoo, Jin-Gyoo;Rhim, Yoon-Chul
    • KSTLE International Journal
    • /
    • v.4 no.1
    • /
    • pp.18-26
    • /
    • 2003
  • Recently, fluid dynamic bearings (EDBs) have important applications in miniature rotating machines such as those found in the computer information storage industry, due to their outstanding low acoustic noise and NRRO (Non-Repeatable Run Out) characteristics. This research investigates the dynamic behavior of fluid dynamic bearings composed of hydrodynamic herringbone groove journal and spiral groove thrust bearing. The five degrees of freedom of FDB are considered to describe the real motion of a general rotor bearing system. The Reynolds equation and five nonlinear equations of motion for the dynamic behavior are solved simultaneously, The incompressible Reynolds equation is solved by using the finite element method (FEM) in order to calculate the pressure distribution in a fluid film and the five equations of motion by using the Runge-Kutta method. The reaction forces and moments are obtained by integrating the pressure along the fluid film. Numerical results are validated by comparing with the previously published experimental and numerical results. As a result the dynamic behavior of FDB spindle such as orbit, floating height, and angular orbit is investigated by considering the conical motion under the static and dynamic load conditions.

Predictive Growth Models of Bacillus cereus on Dried Laver Pyropia pseudolinearis as Function of Storage Temperature (저장온도에 따른 마른김(Pyropia pseudolinearis)의 Bacillus cereus 성장예측모델 개발)

  • Choi, Man-Seok;Kim, Ji Yoon;Jeon, Eun Bi;Park, Shin Young
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.53 no.5
    • /
    • pp.699-706
    • /
    • 2020
  • Predictive models in food microbiology are used for predicting microbial growth or death rates using mathematical and statistical tools considering the intrinsic and extrinsic factors of food. This study developed predictive growth models for Bacillus cereus on dried laver Pyropia pseudolinearis stored at different temperatures (5, 10, 15, 20, and 25℃). Primary models developed for specific growth rate (SGR), lag time (LT), and maximum population density (MPD) indicated a good fit (R2≥0.98) with the Gompertz equation. The SGR values were 0.03, 0.08, and 0.12, and the LT values were 12.64, 4.01, and 2.17 h, at the storage temperatures of 15, 20, and 25℃, respectively. Secondary models for the same parameters were determined via nonlinear regression as follows: SGR=0.0228-0.0069*T1+0.0005*T12; LT=113.0685-9.6256*T1+0.2079*T12; MPD=1.6630+0.4284*T1-0.0080*T12 (where T1 is the storage temperature). The appropriateness of the secondary models was validated using statistical indices, such as mean squared error (MSE<0.01), bias factor (0.99≤Bf≤1.07), and accuracy factor (1.01≤Af≤1.14). External validation was performed at three random temperatures, and the results were consistent with each other. Thus, these models may be useful for predicting the growth of B. cereus on dried laver.

A Runoff Model based on the Stream Magnitude (수로망(水路綱)크기를 이용한 유출모형(流出模型))

  • Lee, Won Hwan;Jun, Min Woo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.9 no.2
    • /
    • pp.83-90
    • /
    • 1989
  • A runoff model was estabilished for the direct runoff hydrograph at each subareas by obtaining the storage coefficient based on stream magnitudes of geomorphic parameters. For this, the relationship between flowsection and channel distance from the outlet of each subareas was assumed as nonlinear equation, and compared with linear one. The applicability of the runoff model to the real watershed was tested for the Bochung river basin. The results of the analysis show that the model was approved to be used for the prediction of small watershed having no runoff records and a linear equation between flowsection and channel distance from the outlet of each subareas was more similar to the observed data for the upper subarea with a steep slope and small area, on the other hand, nonlinear equation for the lower subarea with mild slope and relatively large area.

  • PDF

Topological Design Sensitivity on the Air Bearing Surface of Head Slider

  • Yoon, Sang-Joon;Kim, Min-Soo;Park, Dong-Hoon
    • Journal of Mechanical Science and Technology
    • /
    • v.16 no.8
    • /
    • pp.1102-1108
    • /
    • 2002
  • In this study, a topological design sensitivity of the ai. bearing surface (ABS) is suggested by using an adjoint variable method. The discrete form of the generalized lubrication equation based on a control volume formulation is used as a compatible condition. A residual function of the slider is considered as an equality constraint function, which represents the slider in equilibrium. The slider thickness parameters at all grid cells are chosen as design variables since they are the topological parameters determining the ABS shape. Then, a complicated adjoint variable equation is formulated to directly handle the highly nonlinear and asymmetric coefficient matrix and vector in the discrete system equation of air-lubricated slider bearings. An alternating direction implicit (ADI) scheme is utilized for the numerical calculation. This is an efficient iterative solver to solve large-scale problem in special band storage. Then, a computer program is developed and applied to a slider model of a sophisticated shape. The simulation results of design sensitivity analysis (DSA) are directly compared with those of FDM at the randomly selected grid cells to show the effectiveness of the proposed approach. The overall distribution of DSA results are reported, clearly showing the region on the ABS where special attention should be given during the manufacturing process.

Large displacement analysis of inelastic frame structures by convected material frame approach

  • Chiou, Yaw-Jeng;Wang, Yeon-Kang;Hsiao, Pang-An;Chen, Yi-Lung
    • Structural Engineering and Mechanics
    • /
    • v.13 no.2
    • /
    • pp.135-154
    • /
    • 2002
  • This paper presents the convected material frame approach to study the nonlinear behavior of inelastic frame structures. The convected material frame approach is a modification of the co-rotational approximation by incorporating an adaptive convected material frame in the basic definition of the displacement vector and strain tensor. In the formulation, each discrete element is associated with a local coordinate system that rotates and translates with the element. For each load increment, the corresponding strain-displacement and nodal force-stress relationships are defined in the updated local coordinates, and based on the updated element geometry. The rigid body motion and deformation displacements are decoupled for each increment. This modified approach incorporates the geometrical nonlinearities through the continuous updating of the material frame geometry. A generalized nonlinear function is used to derive the inelastic constitutive relation and the kinematic hardening is considered. The equation of motion is integrated by an explicit procedure and it involves only vector assemblage and vector storage in the analysis by assuming a lumped mass matrix of diagonal form. Several numerical examples are demonstrated in close agreement with the solutions obtained by the ANSYS code. Numerical studies show that the proposed approach is capable of investigating large deflection of inelastic planar structures and providing an excellent numerical performance.

Analysis of Wave Forces Acting on Vertical Cylinder and Wave Transformations by S-Dimensional VOF Method (3차원 VOF법에 의한 주상구조물에 작용하는 파력과 파랑변형 해석)

  • Lee, Sang-Ki;Kim, Chang-Hoon;Kim, Do-Sam;Sin, Dong-Hoon
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2006.11a
    • /
    • pp.377-381
    • /
    • 2006
  • Recently, as economy grow and population increase we need to develop our coastal area and make good use of it for various purposes. That's why large structures are being installed on the sea. Some samples are petroleum storage tanks, pier of sea bridges. These are large structures which have been installed at coastal area. When we design such vertical cylinder, we should avoid too much construction expense caused by excessive designing or by lack of sufficient design. In order to prevent excessive expenditure, it is important to correctly calculate the force of waves acting on structures and predict the wave transformation. In this study, apply to VOF method based on Navier-Stokes equation and then discussed that nonlinear wave force and wave transformation. A comparison between the numerical model and existing experimental results showed nice agreement among them.

  • PDF

Analysis and Experiment of the Dynamic Characteristics of Rubber Materials for Anti-Vibration under Compression (압축하중을 받는 방진고무의 동특성 해석 및 실험)

  • 김국원;임종락;한용희;손희기;안태길
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1998.04a
    • /
    • pp.602-607
    • /
    • 1998
  • Rubber materials are extensively used in various machine design application, mainly for vibration/shock/noise control devices. Over the years an enormous effort has been put into developing procedures to provide properties of rubber material for design function. However, there are still a lot of difficulties in the understanding of dynamic characteristics of the rubber components in compression. In this paper, the dynamic characteristics of rubber materials for anti-vibration under compression were investigated. Dynamic and static tests for rubber material with 3 different hardness were performed. In dynamic tests, non-resonance method, impedance method, was used to obtain the complex modulus (storage modulus and loss factor) and the effects of static pre-strain on the dynamic characteristics were investigated. Also, a relation equation between linear dynamic and nonlinear static behavior of rubber material was discussed and its usefulness to predict their combined effects was investigated.

  • PDF

Analysis and Experiment of the Dynamic Characteristics of Rubber Materials for Anti-Vibration under Compression (압축하중을 받는 방진고무의 동특성 해석 및 실험)

  • 김국원;임종락;한용희;손희기;안태길
    • Journal of KSNVE
    • /
    • v.8 no.5
    • /
    • pp.900-907
    • /
    • 1998
  • Rubber materials are extensively used in various machine design application, mainly for vibration/shock/noise control devices. Over the years an enormous effort has been put into developing procedures to provide properties of rubber material for design function. However, there are still a lot of difficulties in the understanding of dynamic characteristics of the rubber components in compression. In this paper, the dynamic characteristics of rubber materials for anti-vibration under compression were investigated. Dynamic and static tests for rubber material with 3 different hardness were performed. In dynamic tests, non-resonance method, impedance method, was used to obtain the complex modulus(storage modulus and loss factor) and the effects of static pre-strain on the dynamic characteristics were investigated. Also, a relation equation between linear dynamic and nonlinear static behavior of rubber material was discussed and its usefulness to predict their combined effects was investigated.

  • PDF

Finite element solutions of natural convection in porous media under the freezing process (동결과정을 포함한 다공층에서 자연대류에 대한 유한요소 해석)

  • Lee, Moon-Hee;Choi, Chong-Wook;Seo, Suk-Jin;Park, Chan-Guk
    • Proceedings of the KSME Conference
    • /
    • 2000.04b
    • /
    • pp.51-56
    • /
    • 2000
  • The Finite Element Solutions Is reported on solid-liquid phase change in porous media with natural convection including freezing. The model is based on volume averaged transport equations, while phase change is assumed to occur over a small temperature range. The FEM (Finite Element Method) algorithm used in this study is 3-step time-splitting method which requires much less execution time and computer storage the velocity-pressure integrated method and the penalty method. And the explicit Lax-Wendroff scheme is applied to nonlinear convective term in the energy equation. For natural convection including melting and solidification the numerical results show reasonable agreement with FDM (Finite Difference Method) results.

  • PDF

Analysis of (K, r) Incomplete Inspection Policy for Minimizing Inspection Cost subject to a Target AOQ (출하 품질목표 조건하에 검사비용을 최소화하는(K, r) 부분검사정책의 분석)

  • Yang, Moon-Hee
    • IE interfaces
    • /
    • v.24 no.1
    • /
    • pp.87-96
    • /
    • 2011
  • In this paper, we address an optimization problem for minimizing the inspection and rework cost in an inspection-rework system, which forms a network of nodes including a K-stage inspection system, storage areas for items, a source inspection shop, and a re-inspection shop. We assume that (n, 0) acceptance sampling is performed in the source inspection shop and that only 100(1-r)% of items of rejected lots are re-inspected in the re-inspection shop. Since all the nodes are interrelated, in order to formulate our steady-state objective function, we make a steady-state network flow analysis between nodes, and derive both the steady-state amount of flows between nodes and the steady-state fraction defectives by solving a nonlinear balance equation. Finally we provide some fundamental properties and an enumeration procedure for determining the optimal values of (K, r) which both minimizes our objective function and attains a given target average outgoing quality.