• 제목/요약/키워드: nonlinear seismic analysis

검색결과 1,199건 처리시간 0.027초

Seismic response estimation of steel plate shear walls using nonlinear static methods

  • Dhar, Moon Moon;Bhowmick, Anjan K.
    • Steel and Composite Structures
    • /
    • 제20권4호
    • /
    • pp.777-799
    • /
    • 2016
  • One of the major components for performance based seismic design is accurate estimation of critical seismic demand parameters. While nonlinear seismic analysis is the most appropriate analysis method for estimation of seismic demand parameters, this method is very time consuming and complex. Single mode pushover analysis method, N2 method and multi-mode pushover analysis method, modal pushover analysis (MPA) are two nonlinear static methods that have recently been used for seismic performance evaluation of few lateral load-resisting systems. This paper further investigates the applicability of N2 and MPA methods for estimating the seismic demands of ductile unstiffened steel plate shear walls (SPSWs). Three different unstiffened SPSWs (4-, 8-, and 15-storey) designed according to capacity design approach were analysed under artificial and real ground motions for Vancouver. A comparison of seismic response quantities such as, height-wise distribution of floor displacements, storey drifts estimated using N2 and MPA methods with more accurate nonlinear seismic analysis indicates that both N2 and MPA procedures can reasonably estimates the peak top displacements for low-rise SPSW buildings. In addition, MPA procedure provides better predictions of inter-storey drifts for taller SPSW. The MPA procedure has been extended to provide better estimate of base shear of SPSW.

Assessment of FEMA356 nonlinear static procedure and modal pushover analysis for seismic evaluation of buildings

  • Khoshnoud, Hamid Reza;Marsono, Kadir
    • Structural Engineering and Mechanics
    • /
    • 제41권2호
    • /
    • pp.243-262
    • /
    • 2012
  • Nonlinear static analysis as an essential part of performance based design is now widely used especially at design offices because of its simplicity and ability to predict seismic demands on inelastic response of buildings. Since the accuracy of nonlinear static procedures (NSP) to predict seismic demands of buildings affects directly on the entire performance based design procedure, therefore lots of research has been performed on the area of evaluation of these procedures. In this paper, one of the popular NSP, FEMA356, is evaluated and compared with modal pushover analysis. The ability of these procedures to simulate seismic demands in a set of reinforced concrete (RC) buildings is explored with two level of base acceleration through a comparison with benchmark results determined from a set of nonlinear time history analyses. According to the results of this study, the modal pushover analysis procedure estimates seismic demands of buildings like inter story drifts and hinges plastic rotations more accurate than FEMA356 procedure.

Investigating the effect of bond slip on the seismic response of RC structures

  • Fallah, Mohammad Mehdi;Shooshtari, Ahmad;Ronagh, Hamid Reza
    • Structural Engineering and Mechanics
    • /
    • 제46권5호
    • /
    • pp.695-711
    • /
    • 2013
  • It is reasonable to assume that reinforced concrete (RC) structures enter the nonlinear range of response during a severe ground motion. Numerical analysis to predict the behaviour therefore must allow for the presence of nonlinear deformations if an accurate estimate of seismic response is aimed. Among the factors contributing to inelastic deformations, the influence of the degradation of the bond slip phenomenon is important. Any rebar slip generates an additional rotation at the end regions of structural members which are not accounted for in a conventional analysis. Although these deformations could affect the seismic response of RC structures considerably, they are often neglected due to the unavailability of suitable models. In this paper, the seismic response of two types of RC structures, designed according to the Iranian concrete code (ABA) and the Iranian seismic code (2800), are evaluated using nonlinear dynamic and static analyses. The investigation is performed using nonlinear dynamic and static pushover analysis considering the deformations due to anchorage slip. The nonlinear analysis results confirm that bond slip significantly influences the seismic behavior of RC structure leading to an increase of lateral deformations by up to 30% depending on the height of building. The outcomes also identify important parameters affecting the extent of this influence.

엔지니어기반 전산시스템을 적용한 철근콘크리트 기존 건축물의 내진성능평가 (Seismic Performance Evaluation of Existing Buildings with Engineer-oriented Computerized System)

  • 황선우;김동연;김태진;김경태
    • 한국지진공학회논문집
    • /
    • 제21권2호
    • /
    • pp.105-114
    • /
    • 2017
  • Nonlinear analysis for seismic performance evaluation of existing building usually takes 4~5 times more than linear analysis based on KBC code. To obtain accurate results from the nonlinear analysis, there are a lot of things to be considered for nonlinear analysis modeling. For example, reinforcing layout, applied load and seismic details affect behavior of structural members for the existing building. Engineer-oriented computerized system was developed for engineers to evaluate effective seismic performance of existing buildings with abiding by seismic design principles. Using the engineer-oriented program, seismic performance evaluation of reinforced concrete building was performed. Nonlinear hinge properties were applied with real time multiple consideration such as section layout, section analysis result, applied load and performance levels. As a result, the building was evaluated to satisfy LS(Life Safety) performance level. A comparison between engineer-oriented and program-oriented results is presented to show how important the role of structural engineer is for seismic performance evaluation of existing buildings.

비좌굴 가새를 이용한 대공간 구조물 내진 보강 설계 (Seismic Retrofit of Spatial Structures Using Buckling Restrained Brace)

  • 문희숙;김기철;강주원;이준호
    • 한국공간구조학회논문집
    • /
    • 제18권4호
    • /
    • pp.105-111
    • /
    • 2018
  • In this study, the seismic performance and behavior characteristics of the upper truss structure of the large stadium are analyzed by nonlinear dynamic analysis. In the nonlinear dynamic analysis, the earthquake records were generated by site response analysis to simulate the nonlinear behavior of the relevant soil condition where the structure is located. Nonlinear dynamic analysis was performed using Perform-3D and the nonlinear properties of the substructure and the superstructure were determined in accordance with KISTEC guideline. According to the analysis results, excessive deformation occurred in the upper truss element, and plastic hinges exceeded the target performance in some members. Buckling-restrained brace is used for seismic retrofit of stadium structures and the analysis results shows the interstory drift satisfies the target performance level with dissipating the seismic energy efficiently.

Three-Dimensional Seismic Analysis for Spent Fuel Storage Rack

  • Lee, Gyu-Mahn;Kim, Kang-Soo;Park, Keun-Bae;Park, Jong-Kyun
    • Nuclear Engineering and Technology
    • /
    • 제30권2호
    • /
    • pp.91-98
    • /
    • 1998
  • Time history analysis is usually performed to characterize the nonlinear seismic behavior of a spent fuel storage rack(SFSR). In the past, the seismic analyses of the SFSR were performed with two-dimensional planar models, which could not account for torsional response and simultaneous multi-directional seismic input In this study, three-dimensional seismic analysis methodology is developed for the single SFSR using the ANSYS code. The 3D- Model can be used to determine the nonlinear behavior of the rack, i.e., sliding, uplifting, and impact evaluation between the fuel assembly and rack, and rack and the pool wall, This paper also reviews the 3-D modeling of the SFSR and the adequacy of the ANSYS for the seismic analysis. AS a result of the adquacy study, the method of ANSYS transient analysis with acceleration time history is suitable for the seismic analysis of highly nonlinear structure such as an SFSR but it isn't appropriate to use displacement time history of seismic input.

  • PDF

비선형 지진해석을 통한 삼각망 철근상세를 갖는 중실 철근콘크리트 기둥의 성능평가 (Performance Assessment of Solid Reinforced Concrete Columns with Triangular Reinforcement Details Using Nonlinear Seismic Analysis)

  • 김태훈;나경웅;신현목
    • 한국지진공학회논문집
    • /
    • 제21권1호
    • /
    • pp.11-20
    • /
    • 2017
  • This study investigates the seismic performance of solid reinforced concrete columns with triangular reinforcement details using nonlinear seismic analysis. The developed reinforcement details are economically feasible and rational, and facilitate shorter construction periods. By using a sophisticated nonlinear finite element analysis program, the accuracy and objectivity of the assessment process can be enhanced. Solution of the equations of motion is obtained by numerical integration using Hilber-Hughes-Taylor (HHT) algorithm. The proposed numerical method gives a realistic prediction of seismic performance throughout the input ground motions for several column specimens. As a result, developed triangular reinforcement details were designed to be superior to the existing reinforcement details in terms of required performance.

마찰복원형 지진격리장치가 설치된 케이블교량의 성능 기반 내진설계법 개선(II-내진설계 절차 제안) (Improvement of the Performance Based Seismic Design Method of Cable Supported Bridges with Resilient-Friction Base Isolation Systems (II-Proposal for the Seismic Design Procedure))

  • 길흥배;박선규;한경봉;윤완석
    • 한국지진공학회논문집
    • /
    • 제24권4호
    • /
    • pp.169-178
    • /
    • 2020
  • In a previous paper, ambient vibration tests were conducted on a cable stayed bridge with resilient-friction base isolation systems (R-FBI) to extract the dynamic characteristics of the bridge and compare the results with a seismic analysis model. In this paper, a nonlinear seismic analysis model was established for analysis of the bridge to compare the difference in seismic responses between nonlinear time history analysis and multi-mode spectral analysis methods in the seismic design phase of cable supported bridges. Through these studies, it was confirmed that the seismic design procedures of the "Korean Highway Bridge Design Code (Limit State Design) for Cable Supported Bridges" is not suitable for cable supported bridges installed with R-FBI. Therefore, to reflect the actual dynamic characteristics of the R-FBI installed on cable-supported bridges, an improved seismic design procedure is proposed that applies the seismic analysis method differently depending on the seismic isolation effect of the R-FBI for each seismic performance level.

다양한 비선형지진해석방법에 따른 철근콘크리트 전단벽 구조물의 취약도곡선 평가 (Fragility Curve Evaluation of Reinforced Concrete Shear Wall Structures according to Various Nonlinear Seismic Analysis Methods)

  • 장동휘;송종걸;강성립;박창호
    • 한국지진공학회논문집
    • /
    • 제15권4호
    • /
    • pp.1-12
    • /
    • 2011
  • 지진취약도 분석은 원자력 발전소의 내진성능평가를 위하여 발전되어져 왔지만, 현재는 적용성이 건물과 교량 등에도 확대되어지고 있다. 일반적으로 지진취약도 곡선은 수많은 지진가속도 기록을 이용하여 비선형 시간이력해석으로 구한다. 비선형 시간이력해석에 의한 지진취약도 분석은 구조물의 모델링과 해석에 많은 시간이 소요되는 과정을 요구한다. 비선형 시간이력해석의 이와 같은 약점을 보완하기 위해서 변위계수법과 역량스펙트럼 방법과 같은 간단한 해석방법을 지진취약도 분석에 적용하였다. 변위계수법과 역량 스펙트럼 방법을 적용한 지진취약도 곡선의 정확성을 평가하기 위하여, 철근콘크리트 전단벽 구조물에 대한 변위계수법과 역량스펙트럼 방법을 적용한 지진취약도 곡선을 비선형 시간이력해석에 의해 구해진 지진취약도 곡선과 비교하였다. 지진취약도 곡선의 작성을 위해서는 설계스펙트럼에 대응되는 190개의 인공지진과 Shinozuka 등이 제안한 방법이 적용되었다.

지반강성을 고려한 중저층 가새모멘트저항골조의 내진 목표성능평가 (Seismic Object Performance Evaluation of Braced Steel Moment Resisting Frames with Low Rise Building under Different Site Stiffness)

  • 김수정;최병정;박호영;이진우
    • 한국지진공학회논문집
    • /
    • 제20권2호
    • /
    • pp.91-101
    • /
    • 2016
  • This study is the compared seismic performance that are difference between the performance of structures on various site classes and beam-column connection. this analysis model was designed the previous earthquake load. To compare the performance levels of the structure was subjected to nonlinear static and nonlinear dynamic analysis. Nonlinear analysis was used to The Perform 3D program. Nonlinear static analysis was compared with the performance point and Nonlinear dynamic analysis was compared the drift ratio(%). Analysis results, the soft site class of the displacement was more increase than rock site classes of the displacement. Also The smaller the displacement was increased beam-column connection stiffness.