• Title/Summary/Keyword: nonlinear scaling

Search Result 122, Processing Time 0.027 seconds

An Adaptive Maximum Power Point Tracking Scheme Based on a Variable Scaling Factor for Photovoltaic Systems (태양광 시스템을 위한 가변 조정계수 기반의 적응형 MPPT 제어 기법)

  • Lee, Kui-Jun;Kim, Rae-Young;Hyun, Dong-Seok;Lim, Chun-Ho;Kim, Woo-Chull
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.17 no.5
    • /
    • pp.423-430
    • /
    • 2012
  • An adaptive maximum power point tracking (MPPT) scheme employing a variable scaling factor is presented. A MPPT control loop was constructed analytically and the magnitude variation in the MPPT loop gain according to the operating point of the PV array was identified due to the nonlinear characteristics of the PV array output. To make the crossover frequency of the MPPT loop gain consistent, the variable scaling factor was determined using an approximate curve-fitted polynomial equation about linear expression of the error. Therefore, a desirable dynamic response and the stability of the MPPT scheme were maintained across the entire MPPT voltage range. The simulation and experimental results obtained from a 3 KW rated prototype demonstrated the effectiveness of the proposed MPPT scheme.

A Nonlinear Theory for the Brusselator Near the Critical Point Caused by Diffusion

  • Han, Keun-Ok;Lee, Dong-J.;Lee, Jong-Myung;Shin, Kook-Joe;Ko, Seuk-Beum
    • Bulletin of the Korean Chemical Society
    • /
    • v.7 no.3
    • /
    • pp.224-228
    • /
    • 1986
  • A nonlinear theory is presented for the fluctuations of intermediates in the Brusselator near the critical point caused by diffusion. The method used is the two time scaling method different from the conventional method in the sense that a slight nonlinear effect is included in the initial time region where the linear approximation is conventionally valid. The result obtained by the nonlinear theory shows that fluctuations close to the critical point approach the value of a stable steady state or deviate infinitely from an unstable steady state, as time goes to infinity, while the linear theory gives approximately time-independent fluctuations. A brief discussion is given for the correlation at a time between fluctuating intermediates when the system approaches a stable steady state.

Comparing of the effects of scaled and real earthquake records on structural response

  • Ergun, Mustafa;Ates, Sevket
    • Earthquakes and Structures
    • /
    • v.6 no.4
    • /
    • pp.375-392
    • /
    • 2014
  • Time history analyses have been preferred commonly in earthquake engineering area to determine earthquake performances of structures in recent years. Advances in computer technology and structural analysis have led to common usage of time history analyses. Eurocode 8 allows the use of real earthquake records as an input for linear and nonlinear time history analyses of structures. However, real earthquake records with the desired characteristics sometimes may not be found, for example depending on soil classes, in this case artificial and synthetic earthquake records can be used for seismic analyses rather than real records. Selected earthquake records should be scaled to a code design spectrum to reduce record to record variability in structural responses of considered structures. So, scaling of earthquake records is one of the most important procedures of time history analyses. In this paper, four real earthquake records are scaled to Eurocode 8 design spectrums by using SESCAP (Selection and Scaling Program) based on time domain scaling method and developed by using MATLAB, GUI software, and then scaled and real earthquake records are used for linear time history analyses of a six-storied building. This building is modeled as spatial by SAP2000 software. The objectives of this study are to put basic procedures and criteria of selecting and scaling earthquake records in a nutshell, and to compare the effects of scaled earthquake records on structural response with the effects of real earthquake records on structural response in terms of record to record variability of structural response. Seismic analysis results of building show that record to record variability of structural response caused by scaled earthquake records are fewer than ones caused by real earthquake records.

Ground motion selection and scaling for seismic design of RC frames against collapse

  • Bayati, Zeinab;Soltani, Masoud
    • Earthquakes and Structures
    • /
    • v.11 no.3
    • /
    • pp.445-459
    • /
    • 2016
  • Quantitative estimation of seismic response of various structural systems at the collapse limit state is one of the most significant objectives in Performance-Based Earthquake Engineering (PBEE). Assessing the effects of uncertainties, due to variability in ground motion characteristics and random nature of earthquakes, on nonlinear structural response is a pivotal issue regarding collapse safety prediction. Incremental Dynamic Analysis (IDA) and fragility curves are utilized to estimate demand parameters and seismic performance levels of structures. Since producing these curves based on a large number of nonlinear dynamic analyses would be time-consuming, selection of appropriate earthquake ground motion records resulting in reliable responses with sufficient accuracy seems to be quite essential. The aim of this research study is to propose a methodology to assess the seismic behavior of reinforced concrete frames at collapse limit state via accurate estimation of seismic fragility curves for different Engineering Demand Parameters (EDPs) by using a limited number of ground motion records. Research results demonstrate that accurate estimating of structural collapse capacity is feasible through applying the proposed method offering an appropriate suite of limited ground motion records.

Dynamic Stabilization for a Nonlinear System with Uncontrollable Unstable Linearization (제어불가능 불안정 선형화를 가지는 비선형 시스템에 대한 다이나믹 안정화)

  • Seo, Sang-Bo;Shim, Hyung-Bo;Seo, Jin-Heon
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.46 no.4
    • /
    • pp.1-6
    • /
    • 2009
  • In this paper, we design a dynamic state feedback smooth stabilizer for a nonlinear system whose Jacobian linearization may have uncontrollable mode because its eigenvalues are on the right half-plane. After designing an augmented system, a dynamic exponent scaling and backstepping enable one to explicitly design a smooth stabilizer and a continuously differentiable Lyapunov function which is positive definite and proper. The convergence of the designed controller is proved by the new notion 'degree indicator'.

Robust Finite-Time Stabilization for an Uncertain Nonlinear System (불확실한 비선형 시스템에 대한 강인 유한 시간 안정화)

  • Seo, Sang-Bo;Shin, Hyung-Bo;Seo, Jin-Heon
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.46 no.2
    • /
    • pp.7-14
    • /
    • 2009
  • In this paper we consider the problem of global finite-time stabilization for a class of uncertain nonlinear systems which include uncertainties. The uncertainties are time-varying disturbances or parameters belong to a known compact set. The proposed design method is based on backstepping and dynamic exponent scaling using an augmented dynamics, from which, a dynamic smooth feedback controller is derived. The finite-time stability of the closed-loop system and boundedness of the controller are preyed by the finite-time Lyapunov stability theory and a new notion 'degree indicator'.

Design and Analysis of Fuzzy PID Controller for Control of Nonlinear System (비선형 시스템 제어를 위한 퍼지 PID 제어기의 설계 및 해석)

  • Lee, Chul-Heui;Kim, Sung-Ho
    • Journal of Industrial Technology
    • /
    • v.20 no.B
    • /
    • pp.155-162
    • /
    • 2000
  • Although Fuzzy Logic Controller(FLC) adopted three terms as input gives better performance, FLC is in general composed of two-term control because of the difficulty in the construction of fuzzy rule base. In this paper, a three-term FLC which is similar to PID control but acts as a nonlinear controller is proposed. To reduce the complexity of the rule base design and to increase efficiency. a simplified fuzzy PID control is induced from a hybrid velocity/position type PID algorithm by sharing a common rule base for both fuzzy PI and fuzzy PD parts. It is simple in structure, easy in implementation, and fast in calculation. The phase plane technique is applied to obtain the rule base for fuzzy two-term control and the resultant rule base is Macvicar-Whelan type. And the membership function is a Gaussian function. The frequency response information is used in tuning of the membership functions. Also a tuning strategy for the scaling factors is proposed based on the relationship between PID gain and the scaling factors. Simulation results show better performance and the effectiveness of the proposed method.

  • PDF

A Coupled Higher-Order Nonlinear $Schr{\ddot{o}}dinger$ Equation Including Higher-Order Bright and Dark Solitons

  • Kim, Jong-Bae
    • ETRI Journal
    • /
    • v.23 no.1
    • /
    • pp.9-15
    • /
    • 2001
  • We suggest a generalized Lax pair on a Hermitian symmetric space to generate a new coupled higher-order nonlinear $Schr{\ddot{o}}dinger$ equation of a dual type which contains both bright and dark soliton equations depending on parameters in the Lax pair. Through the generalized ways of reduction and the scaling transformation for the coupled higher-order nonlinear $Schr{\ddot{o}}dinger$ equation, two integrable types of higher-order dark soliton equations and their extensions to vector equations are newly derived in addition to the corresponding equations of the known higher-order bright solitons. Analytical discussion on a general scalar solution of the higher-order dark soliton equation is then made in detail.

  • PDF

On linear output feedback for uncertain nonlinear systems

  • Choi, Ho-Lim;Koo, Min-Sung;Lim, Jong-Tae
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.1604-1607
    • /
    • 2004
  • In this paper, we consider a problem of asymptotic output regulation of a class of uncertain nonlinear systems by output feedback. The system under consideration is in the Parametric-Pure-Feedback Form, which does not satisfy the existing conditions such as the triangularity condition or the Lipschitz condition. We propose a linear output feedback controller with a scaling factor, which asymptotically regulates the output of the considered system.

  • PDF

The Role of S-Shape Mapping Functions in the SIMP Approach for Topology Optimization

  • Yoon, Gil-Ho;Kim, Yoon-Young
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.10
    • /
    • pp.1496-1506
    • /
    • 2003
  • The SIMP (solid isotropic material with penalization) approach is perhaps the most popular density variable relaxation method in topology optimization. This method has been very successful in many applications, but the optimization solution convergence can be improved when new variables, not the direct density variables, are used as the design variables. In this work, we newly propose S-shape functions mapping the original density variables nonlinearly to new design variables. The main role of S-shape function is to push intermediate densities to either lower or upper bounds. In particular, this method works well with nonlinear mathematical programming methods. A method of feasible directions is chosen as a nonlinear mathematical programming method in order to show the effects of the S-shape scaling function on the solution convergence.