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We suggest a generalized Lax pair on a Hermi-
tian symmetric space to generate a new coupled
higher-order nonlinear Schrödinger equation of
a dual type which contains both bright and dark
soliton equations depending on parameters in
the Lax pair. Through the generalized ways
of reduction and the scaling transformation for
the coupled higher-order nonlinear Schrödinger
equation, two integrable types of higher-order
dark soliton equations and their extensions to
vector equations are newly derived in addition
to the corresponding equations of the known
higher-order bright solitons. Analytical discus-
sion on a general scalar solution of the higher-
order dark soliton equation is then made in de-
tail.
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Since the first observation of a solitary wave in a canal
almost 170 years ago, the solitary wave phenomena have
been reported in many fields of sciences. Especially the
soliton in an optical fiber, which was first proposed in
a nonlinear Schrödinger equation (NSE) in early 1970s
[1], [2], has motivated many researchers to make use
of it in the optical communication of the next genera-
tion. After a huge amount of study for the practical
applications as well as for the academic interest, several
soliton field experiments of 10 Gbps ∼ 40 Gbps commu-
nications have been carried out recently in Japan, USA,
and Europe [3], respectively. For a higher rate transmis-
sion of pulses, the wavelength division multiplexing [4]
could be also taken into account to conduct the soliton
transmission experiment of 1 Tbps level in a laboratory
[5].

In the ultrafast optical soliton system where a pulse
is in general shorter than T0 ≤ 100 fs [4], higher-order
effects such as the third-order dispersion [6], the self-
steepening [7], and the self-frequency shift [8] need to be
considered for the propagation of femtosecond pulses in
a monomode optical fiber. Regarding the Hirota [9] and
the Sasa-Satsuma [10] equations which are known to be
the only two integrable types of the higher-order NSEs,
the Painlevé integrability property [11], [12], an exact
N -soliton solution [13], and solitary wave and shock
solutions in the generalized phase function have been
found [14]. Also for the description of the multimode
transmission, it is necessary to accommodate degrees of
freedom in cross-couplings between different modes of
pulses in a vector NSE [15], [16]. Remarkably the vec-
tor solitons of polarization-locked states, which have
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been only of the theoretical interest [17], are observed
experimentally [18]. In a combined point of view, the
simultaneous inclusion of both the higher-order and the
cross-coupling effects leads to a coupled higher-order
NSE (CHONSE) which is found to be integrable only
for special cases of coupling constants. The Hirota and
the Sasa-Satsuma equations are extended to the lim-
ited vector forms of the CHONSEs as described in [19]
and [11], [20], respectively. Using the concept of matrix
potential [21], however, we have suggested a general ex-
tension of the Hirota and the Sasa-Satsuma equations
and clarified their relationships [22] in association with
a formalism of Hermitian symmetric spaces [23]. Ap-
plying the formalism, an infinite number of conserved
quantities of the two integrable equations are obtained
as well [24].

Besides the bright soliton mentioned above, the NSE
also admits the existence of a dark soliton [25], [26] for
the positive group velocity dispersion. Similar to the
bright soliton, the dark pulse soliton possesses distinct
properties [27] but the higher-order and/or the cross-
coupling effects are not studied enough yet. In the
present article, based on the Lax pair formalism on the
Hermitian symmetric spaces, we will derive a CHONSE
of a dual type that simultaneously contains higher-order
dark soliton equations (HODSEs) as well as higher-order
bright soliton equations. Generalized ways of consistent
reduction will be applied to the CHONSE to find any
of integrable types allowed by the formalism. Finally
a general and theoretical solution will be discussed for
the HODSE including the new types of the higher-order
dark solitons.

In a monomode optical fiber, the propagation of the
ultrashort pulse is governed by the NSE including the
higher-order terms [28]

∂ψ = i(α1∂2ψ + α2|ψ|2ψ)

+ α3∂3ψ + α4∂(|ψ|2ψ) + α5ψ∂(|ψ|2), (1)

where ∂ ≡ ∂/∂z̄ and ∂ ≡ ∂/∂z are derivatives in re-
tarded time coordinates (z̄ = x, z = t−x/v), and ψ is a
slowly varying envelope function. The real coefficients
αi (i = 1, 2, 3, 4) in (1) specify in sequence the effects
of the group velocity dispersion, the self-phase modula-
tion, the third order dispersion, and the self-steepening.
The remaining coefficient α5 in the last term is complex
in general. The real and the imaginary parts of α5 are
due to the effect of the frequency-dependent radius of
fiber mode and the effect of the self-frequency shift by
stimulated Raman scattering, respectively. The higher-
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order NSE in (1) can be scaled by appropriate change
of variables

z = c1z′, z̄ = c2z̄′, ψ = c3ψ′ (2)

with the real constants c1, c2, and c3. The resulting
normalized equation, omitting the notation of prime for
convenience, is

∂ψ = i(±∂2ψ + |ψ|2ψ)

+ ∂3ψ + β1∂(|ψ|2ψ) + β2ψ∂|ψ|2 (3)

if the scaling constants are taken as

c1 = ±α3

α1
, c2 = ±α2

3

α3
1
, |c3|2 = ± α3

1

α2α2
3
. (4)

Due to the presence of the couplings α3, α4, and α5,
the NSEs of the bright soliton and the dark soliton,
which respectively correspond to (+) and (−) signs in
the group velocity dispersion term in (3), are perturba-
tively corrected by the higher-order effects. The coeffi-
cients of the self-steepening and the self-frequency effect
terms

β1 = ±α1α4

α2α3
, β2 = ±α1α5

α2α3
(5)

are the remaining free parameters to determine the in-
tegrability of (3). The same order of (±) double signs
are implied in (3)-(5). For the higher-order bright soli-
ton equations, the two integrable types β1 = −β2 = +3
(Hirota case) [9] and β1 = −2β2 = +3 (Sasa-Satsuma
case) [10] are well known already. However, since the
integrability of the HODSE has not been studied yet,
relevant issues will be discussed below.

For better understanding, we briefly review the def-
inition of the Hermitian symmetric spaces [16], [23]. A
symmetric space is a coset space G/K for Lie groups
G ⊃ K. The associated Lie algebras g, k, and m of
the coset space G/K are related by the decomposition
g = k⊕m and subject to the commutation relations

[k,k] ⊂ k, [m,m] ⊂ k, [k,m] ⊂ m. (6)

A Hermitian symmetric space is the symmetric space
G/K equipped with a complex structure. The Hermic-
ity of G/K implies that there always exists an element
T in the Cartan subalgebra of g whose adjoint action
characterizes the properties of the subalgebras k and m.
That is, the adjoint action J = ad(T ) ≡ [T, ∗] is a lin-
ear map which defines the subalgebra k as a kernel by
[T,k] = 0, and the subalgebra m by [T,m] ⊂ m satis-
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fying the complex structure condition, J2 = −I, or
[T, [T,m]] = −m for any element of m. In the present
discussion we will restrict our concerns only to the Her-
mitian symmetric space AIII of G/K = SU(M +
N)/(SU(M) ⊗ SU(N) ⊗ U(1)) in general [22] so that
the expression of a CHONSE becomes simply relevant
to the extension of (3) to a vector equation of multicom-
ponents.

Since the existence of a Lax pair admits the integra-
bility of an equation that arises from the compatibility
condition, we first propose a Lax pair on the Hermitian
symmetric space

Lz = ∂ + ε1E + λε2T (7)

Lz̄ = ∂ + U0 + λU1 + λ2U2 + λ3U3 (8)

which generate a set of linear equations LzΨ = Lz̄Ψ =
0. The entities in Lz̄ are

U0 = ε1(∂Ẽ − ε1EẼ) + ε2(∂2E − ε1[E, ∂E])

− 2ε21ε2E
3 (9)

U1 = −ε2ε2(∂Ẽ − ε1EẼ) + ε1ε2E (10)

U2 = ε22(
ε1
ε1

T − ε2E) (11)

U3 = −ε32ε2
ε1

T, (12)

including also the element T in the Cartan subalgebra.
Here E and Ẽ ≡ [T, E] are extended field variables
which belong to m, while ε1, ε2, ε1, and ε2 are arbitrary
complex constants and λ is the spectral parameter. The
requirement of integrability, which is equivalent to the
compatibility condition [Lz, Lz̄] = 0 for all values of the
parameter λ, leads to a generalized CHONSE

∂E =
ε1
ε1

∂2Ẽ − 2ε1ε1E2Ẽ

+
ε2
ε1

∂3E − 3ε1ε2(E2∂E + ∂EE2) (13)

in terms of the three constants ε1, ε1, and ε2. To be
noted is that the given Lax pair in (7)-(8) and the re-
sulting CHONSE in (13), which are generalized in ε, ε
parameter space, accommodate the two types suggested
in [22], [24] and therefore cover others in [11], [19], [20]
in a consistent formulation, if specific choices are taken
for the constants ε1, ε1, and ε2. In the coset space AIII,
the anti-Hermitian E and the diagonal T can be repre-
sented as

E =





0 R S
−R† 0 0
−S† 0 0



 , T =
i
2





I 0 0
0 −I 0
0 0 −I



 (14)
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with complex matrices R, S of the same dimension.
Then the CHONSE in (13) is decomposed into a set
of two equations for R,

∂R = i
[

ε1
ε1

∂2R + 2ε1ε1(RR† + SS†)R
]

+
ε2
ε1

∂3R

+ 3ε1ε2[(RR† + SS†)∂R

+ (∂RR† + ∂SS†)R] (15)

and S that is exactly symmetric under the interchange
R ↔ S.

In regard of reduction [22], the procedures of reducing
higher dimensional equations to lower dimensional equa-
tions in a consistent way are generalized in the present
approach to find, if any, a new type of a CHONSE other
than the known types. From (15) and its symmetric one
for R ↔ S one may guess that plausible candidates for
the reduction of the equations may be S = 0, S ∼ R,
S ∼ R∗, S ∼ RT , and S ∼ R† but rough estimations
show that only the first three are allowed in view of
the consistency after reduction. First of all a reduced
equation for S = 0 is easily obtained directly from (15).
Then let us suppose S = eφ(z̄,z)R with a general func-
tion φ(z̄, z) for the second case. The algebraic calcula-
tion leads to another reduced equation

∂R = i
(

ε1
ε1

∂2R + 4ε1ε1RR†R
)

+
ε2
ε1

∂3R

+ 6ε1ε2
(

RR†∂R + ∂RR†R
)

(16)

with a condition ∂φ = ∂φ = 0 for the two equations
for R, S to be equivalent. Hence in the reduction of
the type, only φ(z̄, z) = constant is possible. For the
third case if S = eφ(z̄,z)R∗, the same requirement of
well-defined equations for R, S, which are to be related
by a complex conjugate each other, leads a new type of
another reduced equation

∂R = i
(

ε1
ε1

∂2R + 2ε1ε1RR†R
)

+
ε2
ε1

∂3R

+ 3ε1ε2[(RR† + R∗RT )∂R

+ (∂RR† + ∂R∗RT )R] (17)

under a condition

∂φ = −2ε1
3ε2

, ∂φ = − 4ε31
27ε1ε22

. (18)

To be noted is that, the direct derivation of (17) is possi-
ble from reducing (15) because of the introduction of the
local transformation as given in (18). Consequently the
different ways of reduction from the extended CHONSE
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provide three kinds of the independent equations. In
view of (1)-(5), needed quantities of the reduced equa-
tions can be calculated. That is, if G/K = SU(2)/U(1),
(i) S = 0, R = ψ leads to α1 = ε1

ε1
, α2 = 2ε1ε1, α3 =

ε2
ε1

, α4 = 6ε1ε2, α5 = −6ε1ε2, c1 = ± ε2
ε1

, c2 =

± ε1ε22
ε31

, |c3|2 = ± 1
2 ·

ε21
ε21ε22

, and β1 = −β2 = ±3, on
the other hand if G/K = SU(3)/(SU(2) ⊗ U(1)), (ii)
S = eφ(z̄,z)R, R = ψ leads to α1 = ε1

ε1
, α2 = 4ε1ε1, α3 =

ε2
ε1

, α4 = 12ε1ε2, α5 = −12ε1ε2, c1 = ± ε2
ε1

, c2 =

± ε1ε22
ε31

, |c3|2 = ± 1
4 ·

ε21
ε21ε22

, and β1 = −β2 = ±3, and

(iii) S = eφ(z̄,z)R∗, R = ψ leads to α1 = ε1
ε1

, α2 =
2ε1ε1, α3 = ε2

ε1
, α4 = 6ε1ε2, α5 = −3ε1ε2, c1 =

± ε2
ε1

, c2 = ± ε1ε22
ε31

, |c3|2 = ± 1
2 ·

ε21
ε21ε22

, and β1 = −2β2 =
±3, respectively. In case of the bright soliton equations,
real c1, c2, and c3 always exist provided ε1, ε1, and ε2 are
real. In case of the dark soliton equations, the existence
of real scaling requires especially

|c3|2 ∼ − ε21
ε21ε

2
2

> 0. (19)

The complex analysis in detail shows that c1, c2, and c3

are real in the case of the dark solitons provided ε1, ε1,
and ε2 are purely imaginary. Conclusively speaking, if
ε1, ε1, and ε2 are real the CHONSE provides the higher-
order bright soliton equations of the known Hirota and
Sasa-Satsuma types but if the parameters are purely
imaginary the same CHONSE provides the HODSEs of
the two new types

β1 = −β2 = −3 (type I) (20)

β1 = −2β2 = −3 (type II) (21)

as well. Furthermore if R = (ψ1, ψ2, · ··, ψN ) is simply
substituted into (15) with S = 0 (or equivalently (16))
and into (17) and then normalized, the multicomponent
representation leads to the N -coupled extension of (3),

∂ψk = i



±∂2ψk +
N

∑

j=1

ψ∗j ψjψk



 + ∂3ψk

+

{

(± 3
2 )

∑N
j=1 ψ∗j ψj∂ψk

(±3)
∑N

j=1 ψ∗j ψj∂ψk

+

{

(± 3
2 )

∑N
j=1 ψ∗j ∂ψjψk

(± 3
2 )

∑N
j=1 ∂(ψ∗j ψj)ψk

(22)

involving two vector HODSEs corresponding to the type
I, II in (20)-(21) as well as the known types of the higher-
order vector NSEs for the bright soliton [22]. No new
type arises in a point of view of the normalization in
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(2)-(5) even though the reduction from a higher dimen-
sionality of the coset space G/K is applied. It is also
remarkable that the Lax pair in (7)-(8) implicitly accom-
modates dual types of the bright and the dark soliton
equations, depending on whether the parameters ε1, ε1,
and ε2 are all real or all purely imaginary.

A transformation of variables from an unprimed to a
double primed coordinate system and of the matrix E
changes the form of the CHONSE in (13). Under the
transformation

z → z′′ = z + pz, z̄ → z̄′′ = z̄,

E → F = eθ(z̄,z)T Ee−θ(z̄,z)T (23)

with a real constant p and a general function θ(z̄, z),
the anti-Hermicity and the complex structure condition
[T, [T, F ]] = −F are maintained for E → F ⊂ m on
the Hermitian symmetric space. In a consistent point
of view, eliminating the unnecessary types of terms to
form a new CHONSE for F after the transformation,

∂F =
ε1 − 3ε2∂θ

ε1
∂2F̃ − 2ε1(ε1 − 3ε2∂θ)F 2F̃

+
ε2
ε1

∂3F − 3ε1ε2(F 2∂F + ∂FF 2) (24)

imposes restrictions on p and θ(z̄, z),

p = 2
ε1
ε1

(∂θ)− 3
ε2
ε1

(∂θ)2 (25)

∂2θ = 0 (26)

∂θ = −ε1
ε1

(∂θ)2 + 2
ε2
ε1

(∂θ)3 (27)

without any loss of generality. The notation of dou-
ble prime is omitted in (24)-(27) for convenience. If
(24) is compared with (13), in spite of the differences
in the group velocity dispersion and the self-phase mod-
ulation terms generated by the point transformation,
the two CHONSEs are nothing but equivalent to each
other. Therefore all the results relevant for F including
the analysis of reduction are obtained from the straight-
forward replacements E → F , R → V , S → W , and
ε1 → ε1− 3ε2∂θ in the corresponding equations, respec-
tively. For example, regarding |c3|2 ∼ − (ε1−3ε2∂θ)2

ε21ε22
> 0

in analogy with (19), the same conclusion is implied
for the characteristic of (24) depending on whether ε1,
ε1 − 3ε2∂θ, and ε2 are real or purely imaginary.

It is crucial that the generalized Lax pair combined
with the scaling transformation predicts the unprece-
dented types of the HODSEs and their vector equations
for the purely imaginary constants. Since the Lax pair
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a priori assumes the existence of a solution, the cor-
responding equations can be solved analytically. The
method of Bäcklund transformation which was used to
solve the current formalism on the Hermitian symmetric
spaces, as discussed in [22] for example, fails to apply to
the HODSE in (3) because of the presence of the param-
eter ε1 6= 1 in the Lax pair. In order for the HODSE
to show the propagation of a soliton with a dark dip,
however, one can imagine that the solution is necessary
to have a globally similar form as the conventional one
in the absence of the perturbative higher-order correc-
tions. Therefore we suppose an ansatz in analog with
the form described in [27], allowing for the most general
number of parameters possible, as

ψ(z̄, z) = [A tanh(az̄ + bz + c) + iB]

× exp (kz̄ − ωz + θ0) (28)

with real constants A, B, a, b, c, k, ω, and θ0. This
form is equivalent to a generalized dark soliton. Non-
trivial relationships among the 6 dynamical parameters
A, B, a, b, k, and ω will be determined if and only if
the ansatz is indeed an analytical solution. If we put
(28) into the HODSE in (3), the coefficient comparison
of linearly independent functions requires constraints

a = AB − 2ωb + b(4b2 − 3ω2)

+ β1(3bA2 + bB2 − ωAB) + 2β2bA2 (29)

b2 = −1
6
(3β1 + 2β2)A2 (30)

k = ω3 + ω2 − β1(A2 + B2)ω + A2 + B2 (31)

0 = (6b2 + β1A2)ω + 2(β1 + β2)bAB + 2b2

− A2 (32)

among the constants. The 4 relations in (29)-(32) seem-
ingly implies that at least 2 dynamical parameters can
remain independent in the solution. For the existence
of a well-behaved solitary wave, the parameters should
be properly defined also. First of all the condition

3β1 + 2β2 < 0 (33)

is indispensable for the nontrivial b2 > 0 in (30), and
the real b is expressed as

b = ±
√

− (3β1 + 2β2)
6

·A (34)

in terms of A. If (34) is substituted into (32) then, ω
can be solved as

ω = ±
√

− (3β1 + 2β2)
6

·B − 3β1 + 2β2 + 3
6(β1 + β2)

(35)
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in terms of B. Thus b and ω are determined appropri-
ately, leaving restrictions on β1 and β2. In obtaining
(35) another condition

β1 + β2 6= 0, (excluding β1 = −β2 = −3) (36)

should be imposed for the existence of the well-defined
ω. The intrinsic exception β1 = −β2 = −3 to the condi-
tion β1 + β2 6= 0 is because ω can be arbitrary as unde-
termined in the case where β1+β2 = 0, 3β1+2β2+3 = 0
are satisfied simultaneously. The remaining a and k are
represented as they are if b and ω are replaced. A set
of the seeming two solutions for an equation due to the
presence of (±) signs in (34)-(35) are nothing but iden-
tical because they are related to each other by ψ ↔ −ψ
(i.e., A ↔ −A, B ↔ −B) in (28). Especially for the
two types in (20)-(21) induced from the Lax pair, the
relations among the constants can be more simplified as
a = (3ω+1)AB−(± A√

2
)[A2+3(ω2+B2)+2ω], b = ± A√

2
,

k = ω3 +ω2 +3(A2 +B2)ω +A2 +B2, ω = arbitrary for
the type I, and also a = ±A(−2A2− 3B2 + 1

3 ), b = ±A,
k = ±B[4B2 + (3A2 − 1

3 )] + 2
27 , ω = ±B − 1

3 for the
type II, respectively. The same order of (±) double signs
are implied from (34) through. Therefore the HODSE,
which is in fact initiated by the dual implication of the
Lax pair, accompanies the higher-order dark soliton as
in (28) under the restrictions of coverage spanned by β1

and β2 in (33) and (36).
To summarize, based on the formulation of a Her-

mitian symmetric space we propose a generalized Lax
pair and a resulting coupled higher-order nonlinear
Schrödinger equation which accommodate others re-
ported previously. The generalized ways of reduction
and the normalizing transformation for the coupled
higher-order nonlinear Schrödinger equation lead to
two integrable types of dual equations in spite of its
reducing dimensionality - the well-known Hirota and
Sasa-Satsuma equations for the higher-order bright
solitons and two new types of higher-order dark soliton
equations, depending on whether parameters in the
Lax pair are real or purely imaginary - and their
extensions to N -component vector equations. The
higher-order dark soliton equations and their vector
extensions are unprecedented types derived from the
Lax pair formalism. Finally we prove that a general
scalar solution, covering the two new types, of the
higher-order dark soliton equation exists theoretically
under restricted conditions.

ACKNOWLEDGEMENT

Jongbae Kim 13



The author is grateful to Dr. Q. H. Park for valuable
comments. This work is supported by the Ministry of
Information and Communication of Korea.

References
[1] V. E. Zakharov and A. B. Shabat, “Exact The-

ory of Two-dimensional Self-focusing and One-
dimensional Self-modulation of Waves in Nonlinear
Media”, Sov. Phys. JETP, Vol. 34, No.1, 1972, pp.
62−69.

[2] A. Hasegawa and F. Tappert, “Transmission of
Stationary Nonlinear Optical Pulses in Dispersive
Dielectric Fibers I: Anomalous Dispersion”, Appl.
Phys. Lett., Vol. 23, No. 3, 1973, pp. 142−144.

[3] A. Franco et. al, “10 Gbp/s Alternate Polariza-
tion Soliton Transmission over 300 km Step-index
Fiber Link with No In-line Control”, Proc. Euro-
pean Conference on Optical Communication, Vol.
1, Mardid, Spain, 1998, pp. 95−96, and references
therein.

[4] G. P. Agrawal, Nonlinear Fiber Optics, Academic
Press, New York, 1995.

[5] Le Guen et. al, “Narrow Band 1.02 Tbit/s (51×
Gbit/s) Soliton DWDM Transmission over 1000 km
of Standard Fiber with 100 km Amplifier Spans”,
Proc. OFC’99, Paper PD4, San Diego, USA, 1999,
pp. 1−3.

[6] E. Bourkoff, W. Zhao, R. I. Joseph, and D. N.
Christodoulides, “Evolution of Femtosecond Pulses
in Single-mode Fibers Having Higher-order Nonlin-
earity and Dispersion”, Opt. Lett., Vol. 12, No. 4,
1987, pp. 272−274.

[7] J. R. de Oliveria and M. A. de Moura, “Analyti-
cal Solution for the Modified Nonlinear Schrödinger
Equation Describing Optical Shock Formation”,
Phys. Rev. E, Vol. 57, No. 4, 1998, pp. 4751−4755.

[8] J. P. Gordon, “Theory of the Soliton Self-frequency
Shift”, Opt. Lett. Vol. 11, No. 10, 1986, pp.
662−664.

[9] R. Hirota, “Exact Envelope Soliton Solutions of
Nonlinear Wave Equation”, J. Math. Phys., Vol.
14, 1973, pp. 805−809.

[10] N. Sasa and J. Satsuma, “New Type of Soliton So-
lutions for a Higher-order Nonlinear Schrödinger
Equation”, J. Phys. Soc. Jpn., Vol. 60, No. 2, 1991,
pp. 409−417.

[11] K. Porsezian, P. S. Sundaram, and A. Mahal-
inggam, “Coupled Higher-order Nonlinear Schrö-
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