• Title/Summary/Keyword: nonlinear predictive control

Search Result 117, Processing Time 0.024 seconds

Stability and Performance Investigations of Model Predictive Controlled Active-Front-End (AFE) Rectifiers for Energy Storage Systems

  • Akter, Md. Parvez;Mekhilef, Saad;Tan, Nadia Mei Lin;Akagi, Hirofumi
    • Journal of Power Electronics
    • /
    • v.15 no.1
    • /
    • pp.202-215
    • /
    • 2015
  • This paper investigates the stability and performance of model predictive controlled active-front-end (AFE) rectifiers for energy storage systems, which has been increasingly applied in power distribution sectors and in renewable energy sources to ensure an uninterruptable power supply. The model predictive control (MPC) algorithm utilizes the discrete behavior of power converters to determine appropriate switching states by defining a cost function. The stability of the MPC algorithm is analyzed with the discrete z-domain response and the nonlinear simulation model. The results confirms that the control method of the active-front-end (AFE) rectifier is stable, and that is operates with an infinite gain margin and a very fast dynamic response. Moreover, the performance of the MPC controlled AFE rectifier is verified with a 3.0 kW experimental system. This shows that the MPC controlled AFE rectifier operates with a unity power factor, an acceptable THD (4.0 %) level for the input current and a very low DC voltage ripple. Finally, an efficiency comparison is performed between the MPC and the VOC-based PWM controllers for AFE rectifiers. This comparison demonstrates the effectiveness of the MPC controller.

Reconfiguration Control Using LMI-based Constrained MPC (선형행렬부등식 기반의 모델예측 제어기법을 이용한 재형상 제어)

  • Oh, Hyon-Dong;Min, Byoung-Mun;Kim, Tae-Hun;Tahk, Min-Jea;Lee, Jang-Ho;Kim, Eung-Tai
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.38 no.1
    • /
    • pp.35-41
    • /
    • 2010
  • In developing modern aircraft, the reconfiguration control that can improve the safety and the survivability against the unexpected failure by partitioning control surfaces into several parts has been actively studied. This paper deals with the reconfiguration control using model predictive control method considering the saturation of control surfaces under the control surface failure. Linearized aircraft model at trim condition is used as the internal model of model predictive control. We propose the controller that performs optimization using LMI (linear matrix inequalities) based semi-definite programming in case that control surface saturation occurs, otherwise, uses analytic solution of the model predictive control. The performance of the proposed control method is evaluated by nonlinear simulation under the flight scenario of control surface failure.

On discrete nonlinear self-tuning control

  • Mohler, R.-R.;Rajkumar, V.;Zakrzewski, R.-R.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1991.10b
    • /
    • pp.1659-1663
    • /
    • 1991
  • A new control design methodology is presented here which is based on a nonlinear time-series reference model. It is indicated by highly nonlinear simulations that such designs successfully stabilize troublesome aircraft maneuvers undergoing large changes in angle of attack as well as large electric power transients due to line faults. In both applications, the nonlinear controller was significantly better than the corresponding linear adaptive controller. For the electric power network, a flexible a.c. transmission system (FACTS) with series capacitor power feedback control is studied. A bilinear auto-regressive moving average (BARMA) reference model is identified from system data and the feedback control manipulated according to a desired reference state. The control is optimized according to a predictive one-step quadratic performance index (J). A similar algorithm is derived for control of rapid changes in aircraft angle of attack over a normally unstable flight regime. In the latter case, however, a generalization of a bilinear time-series model reference includes quadratic and cubic terms in angle of attack. These applications are typical of the numerous plants for which nonlinear adaptive control has the potential to provide significant performance improvements. For aircraft control, significant maneuverability gains can provide safer transportation under large windshear disturbances as well as tactical advantages. For FACTS, there is the potential for significant increase in admissible electric power transmission over available transmission lines along with energy conservation. Electric power systems are inherently nonlinear for significant transient variations from synchronism such as may result for large fault disturbances. In such cases, traditional linear controllers may not stabilize the swing (in rotor angle) without inefficient energy wasting strategies to shed loads, etc. Fortunately, the advent of power electronics (e.g., high-speed thyristors) admits the possibility of adaptive control by means of FACTS. Line admittance manipulation seems to be an effective means to achieve stabilization and high efficiency for such FACTS. This results in parametric (or multiplicative) control of a highly nonlinear plant.

  • PDF

The improvement for steam temperature control at Boryung bituminous coal-fired drum boiler type thermal power plant (유연탄연소 드럼타입 보일러를 채택한 발전프랜트의 효율적 온도제어에 관한 연구)

  • 류홍우;황재호
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1988.10a
    • /
    • pp.693-696
    • /
    • 1988
  • This paper is investigated on the improvement for steam temperature control at Boryung coal-fired drum boiler type thermal power plant. The steam temperatur control has been mainly operated by the feedback controllers. Automatic controllers are bounded and difficult. Because boiler system is nonlinear and the system time delay is very large. Optimal regulators including predictive feedforward and differentiate control are synthesized and some improved output results are presented.

  • PDF

Implementation and Comparison of Controllers for Planar Robots

  • Kern, John;Urrea, Claudio;Torres, Hugo
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.2
    • /
    • pp.926-936
    • /
    • 2017
  • The nonlinear behavior and the high performance requirement are the main problems that appear in the design of manipulator robots and their controllers. For that reason, the simulation, real-time execution and comparison of the performance of controllers applied to a robot with three degrees of freedom are presented. Five controllers are prepared to test the robot's dynamic model: predictive; hyperbolic sine-cosine; sliding mode; hybrid composed of a predictive + hyperbolic sine-cosine controller; and adaptive controller. A redundant robot, a communication and signal conditioning interface, and a simulator are developed by means of the MatLab/Simulink software, which allows analyzing the dynamic performance of the robot and of the designed controllers. The manipulator robot is made to follow a test trajectory which, thanks to the proposed controllers, it can do. The results of the performance of this manipulator and of its controllers, for each of the three joints, are compared by means of RMS indices, considering joint errors according to the imposed trajectory and to the controller used.

Model Predictive Control System Design with Real Number Coding Genetic Algorithm (실수코딩 유전알고리즘을 이용한 모델 예측 제어 시스템 설계)

  • Bang, Hyun-Jin;Park, Jong-Chon;Hong, Jin-Man;Lee, Hong-Gi
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.16 no.5
    • /
    • pp.562-567
    • /
    • 2006
  • Model Predictive Control(MPC) system uses the current input which minimizes the difference between the desired output and the estimated output in the receding horizon scheme. In many cases (for example, system with constraints or nonlinear system), however, it is not easy to find the optimal solution to the above problem. In this paper, we show that real number coding genetic algorithm can be used to solve the optimal problem for MPC effectively. Also, we show by simulation that the real coding algorithm is mote natural and advantageous than the digital coding one.

Design of active power factor control AC/DC converter having current control loop with no compensator (전류 제어 루프에 보상을 행하지 않는 능동 역률 제어 AC/DC 컴버터의 제어기 설계)

  • 이인호;김성환;유지윤;박귀태
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.45 no.2
    • /
    • pp.216-223
    • /
    • 1996
  • The active power factor control AC/DC converter needs a current loop compensator to obtain better dynamic characteristics and power factor performance, but the optimal design of a current loop compensator is difficult because the AC/DC converter is a nonlinear system having periodically varying poles and zeros. The predictive current control scheme generates a control input using the dynamic equations of the AC/DC converter so that the dynamic of the AC/DC converter is included in the controller and the necessary bandwidth and the gain characteristics of the current control loop are satisfied. And as a result, a compensator becomes unnecessary and the current loop shows the improved current loop characteristics. In this paper, a power factor controller without current loop compensator by adopting a predictive current control scheme is designed and the designed power factor controller is modelled by using a small signal perturbation modelling technique, and simulated to investigate its small signal characteristics. A 200 W power factor control AC/DC converter is built to verify the effectiveness of the proposed power factor controller.

  • PDF

Predictive Instantaneous Control of inverter for UPS (UPS용 예측 순시제어형 인버터)

  • Kim, B.J.;Kim, J.H.;Cho, J.H.;Kim, J.S.;Lee, J.S.
    • Proceedings of the KIEE Conference
    • /
    • 1995.07a
    • /
    • pp.237-239
    • /
    • 1995
  • The inverter for UPS system is required to satisfy pure sinusoidal output voltage with very low THD(Total Harmonic distortion). This paper proposes a TMS320c31 digital signal processor based predictive instantaneous control scheme of inverter. The proposed scheme is able to satisfy the conditions; high capability, high efficiency, low audible noise and robustness of inverter. The transient state characteristics of proposed inverter has been improved. in case of power failure or recovery, nonlinear load, sudden load change or parameters variations. Finally, the performance of the proposed inverter is shown and discussed by simulation and experiment.

  • PDF

Sliding Mode Prediction Based Tracking Control for Mobile Robots (슬라이딩 평면 예측에 기반한 이동 로봇의 경로 추종 제어)

  • Moon, Ssu-Rey;Choi, Yoon-Ho;Park, Jin-Bae
    • Proceedings of the KIEE Conference
    • /
    • 2008.10b
    • /
    • pp.448-449
    • /
    • 2008
  • 본 논문에서는 이동 로봇의 경로 추종을 위해서, 비선형 모델 예측 슬라이딩 모드 제어(nonlinear model predictive strung mode control) 기법을 제안한다. 본 논문에서 제안한 방법에서는 미래의 슬라이딩 평면을 예측하고, 이에 따른 최적화된 제어기를 유도함으로써 슬라이딩 모드 제어기 단독으로 사용하는 제언 시스템에 비해 성능을 향상시킬 수 있다. 마지막으로 컴퓨터 시뮬레이션을 통해 본 논문에서 제안한 제어기의 성능을 검증하고자한다.

  • PDF

Robust fuzzy self-organizing control system of temperature environmental test equipment (온도환경 시험장비의 강인한 퍼지 자기조성 제어 시스템)

  • 김인식;윤일선;남세규
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1993.10a
    • /
    • pp.1086-1088
    • /
    • 1993
  • A robust fuzzy self-organizing controller(SOC) is proposed for an environmental temperature chamber. Although fuzzy SOC can improve the performance of nonlinear system, the controller is ineffective to solve the performance degradation owing to the time varying factors. In this paper, we construct the fuzzy SOC with a predictive scheme based on the 386PC. The usefulness of the proposed scheme is shown through the comparison of the PI controller and the fuzzy controller.

  • PDF