• Title/Summary/Keyword: nonlinear optics.

Search Result 216, Processing Time 0.026 seconds

Nonlinear Optical Properties of Eosin-Doped Boric Acid Glass (Eosin을 첨가한 Boric-Acid Glass의 비선형 광학적 특성)

  • 유연석
    • Korean Journal of Optics and Photonics
    • /
    • v.2 no.3
    • /
    • pp.133-138
    • /
    • 1991
  • Eosin-doped boric acid glass saturable absorber has a relatively low saturation intensity (700 mW/$\textrm{cm}^2$) and low power optical phase conjugation is achived by the degenerate four-wave mixing (DFWM) experiments. Polarization properties of optical phase conjugation by DFWM have been demonstrated in this materials using a cw argon ion laser at wavelength 488 nm. The dependence of the phase conjugated reflectivity on the intensity and wavelength of the pump beam is examined. The magnitude of the energy exchange by the nondegenerate two-wave mixing (NDTWM) is maximized by frequency difference between the two beams of $\varphi\simeq$ 1100 Hz.

  • PDF

Efficient Compression Schemes for Double Random Phase-encoded Data for Image Authentication

  • Gholami, Samaneh;Jaferzadeh, Keyvan;Shin, Seokjoo;Moon, Inkyu
    • Current Optics and Photonics
    • /
    • v.3 no.5
    • /
    • pp.390-400
    • /
    • 2019
  • Encrypted images obtained through double random phase-encoding (DRPE) occupy considerable storage space. We propose efficient compression schemes to reduce the size of the encrypted data. In the proposed schemes, two state-of-art compression methods of JPEG and JP2K are applied to the quantized encrypted phase images obtained by combining the DRPE algorithm with the virtual photon counting imaging technique. We compute the nonlinear cross-correlation between the registered reference images and the compressed input images to verify the performance of the compression of double random phase-encoded images. We show quantitatively through experiments that considerable compression of the encrypted image data can be achieved while security and authentication factors are completely preserved.

Second Harmonic Generation on the Surface of Porous Silicon Superlattice (초격자 다공질규소 표면에서 제 2고조파 발생)

  • Cho, Chang-Ho;Park, Jong-Dae
    • The Journal of Natural Sciences
    • /
    • v.12 no.1
    • /
    • pp.31-39
    • /
    • 2002
  • Second harmonic generation was measured in porous silicon superlattices surface which were made by changing and anodization current density and the anodization time periodically in the process of obtaining porous silicon. The technique of second harmonic generation is used as a probe to the surface of porous silicon superlattice by using Nd:YAG laser. We have investigated the surface structure and nonlinear-optics properties of porous silicon superlattice.

  • PDF

Analysis and measurement of the cascadability for 2R O/E/O wavelength converter (Re-timing 기능을 생략한 광/전/광 파장변환기의 cascadability 분석 및 측정)

  • 장윤선;김광준
    • Korean Journal of Optics and Photonics
    • /
    • v.14 no.3
    • /
    • pp.215-218
    • /
    • 2003
  • A 2R O/E/O wavelength converter is useful for bit rate transparency, though it has a limit on cascadability due to timing-jitter accumulation. In this paper, we propose a nonlinear signal model which is more practical than the commonly used sine wave model. With our model, we theoretically analyzed the effects of timing-jitter and the cascadability of a 2R O/E/O wavelength converter. To confirm the theoretical results, we measured the cascadability in a 40-km re-circulation loop for 10 Gb/s signal.

All-optical Polarization Phase Modulation in Coupled Quantum Dots

  • Je, Ku Chul;Kyhm, Kwangseuk
    • Current Optics and Photonics
    • /
    • v.1 no.1
    • /
    • pp.60-64
    • /
    • 2017
  • We have considered optical nonlinearities of coupled quantum dots theoretically, where an exciton dipole-dipole interaction is mediated between the adjacent large and small quantum dots. For increasing a pump pulse area in resonance with the large quantum dot exciton the induced nonlinear refractive index of the small quantum dot exciton has been obtained. As the exciton dipole-dipole interaction depends on the relative orientation of two exciton dipoles, the optical nonlinearities for the directions parallel and perpendicular to the coupling axis of the two quantum dots are compared. The directional imbalance of optical nonlinearities in coupled quantum dots can be utilized for a polarization phase modulator by controlling a pump pulse area and propagation length.

High-speed Two-photon Laser Scanning Microscopy Imaging of in vivo Blood Cells in Rapid Circulation at Velocities of Up to 1.2 Millimeters per Second

  • Boutilier, Richard M.;Park, Jae Sung;Lee, Ho
    • Current Optics and Photonics
    • /
    • v.2 no.6
    • /
    • pp.595-605
    • /
    • 2018
  • The two-photon process of microscopy provides good spatial resolution and optical sectioning ability when observing quasi-static endogenous fluorescent tissue within an in vivo animal model skin. In order to extend the use of such systems, we developed a two-photon laser scanning microscopy system capable of also capturing $512{\times}512$ pixel images at 90 frames per second. This was made possible by incorporating a 72 facet polygon mirror which was mounted on a 55 kRPM motor to enhance the fast-scan axis speed in the horizontal direction. Using the enhanced temporal resolution of our high-speed two-photon laser scanning microscope, we show that rapid processes, such as fluorescently labeled erythrocytes moving in mouse blood flow at up to 1.2 mm/s, can be achieved.

Compact, Wavelength-selectable, Energy-ratio Variable Nd:YAG Laser at Mid-ultraviolet for Chemical Warfare Agent Detection

  • Kim, Jae-Ihn;Cho, Ki Ho;Lee, Jae-Hwan;Ha, Yeon-Chul
    • Current Optics and Photonics
    • /
    • v.3 no.3
    • /
    • pp.243-247
    • /
    • 2019
  • We have developed a compact, wavelength-selectable, Q-switched Nd:YAG laser at mid ultraviolet for chemical warfare agent detection. The fundamental wave at 1064 nm is delivered by a pulsed solid state laser incorporating with a square-type Nd:YAG rod in a resonator closed by two crossed Porro prisms for environmental reliability. The output energy at 213 nm ($5{\omega}$) and 266 nm ($4{\omega}$) by ${\chi}^{(2)}$ process in the sequentially disposed BBO crystals are measured to be 6.8 mJ and 15.1 mJ, respectively. The output wavelength is selected for $5{\omega}$ and $4{\omega}$ by a motorized wavelength switch. The energy ratio of the $5{\omega}$ to the $4{\omega}$ is varied from 0.05 to 0.85 by controlling the phase matching temperature of the nonlinear crystal for sum-frequency generation without change of the output pulse parameters.

Deformation of the PDMS Membrane for a Liquid Lens Under Hydraulic Pressure

  • Gu, Haipeng;Gan, Zihao;Hong, Huajie;He, Keyan
    • Current Optics and Photonics
    • /
    • v.5 no.4
    • /
    • pp.391-401
    • /
    • 2021
  • In the present study, a hyperelastic constitutive model is built by complying with a simplified hyperelastic strain energy function, which yields the numerical solution for a deformed polydimethylsiloxane (PDMS) membrane in the case of axisymmetric hydraulic pressure. Moreover, a nonlinear equilibrium model is deduced to accurately express the deformation of the membrane, laying a basis for precise analysis of the optical transfer function. Comparison to experimental and simulated data suggests that the model is capable of accurately characterizing the deformation behavior of the membrane. Furthermore, the stretch ratio derived from the model applies to the geometrical optimization of the deformed membrane.

Intracavity frequency doubling of a single-mode Nd:YAG laser using a nonplanar ring cavity (비평면 고리형 공진기를 이용한 단일 모드 Nd:YAG 레이저의 내부 공진기 주파수 배가)

  • 박종락;윤태현
    • Korean Journal of Optics and Photonics
    • /
    • v.14 no.1
    • /
    • pp.85-91
    • /
    • 2003
  • Intracavity frequency doubling of a single-mode Nd:YAG laser by using a nonplanar ring cavity is demonstrated. The nonplanar ring cavity consists of a Brewster-angled Nd:YAG crystal placed in a magnetic field, a KTP crystal, and two spherical mirrors. In this design the Nd:YAG block acts as both a nonreciprocal polarization rotator and a partial polarizer, and the nonplanar portion of the ring cavity, which is formed by a relative twist angle between the Brewster-angled end surfaces of the Nd:YAG block, serves as a reciprocal polarization rotator. An eigenpolarization theory for the cavity configuration is presented and suitable values of the relative twist angle for unidirectional operation are estimated. A single-mode output power of 22 ㎽ at 532 nm and an optical to optical conversion efficiency of 1.8% are obtained with a 1.2 W diode laser at 809 nm.

The Real-Time Temporal and Spatial Diagnostics of Ultrashort High-Power Laser Pulses using an All-Reflective Single-Shot Autocorrelator

  • Kim, Ha-Na;Park, Seong Hee;Kim, Kyung Nam;Han, Byungheon;Shin, Jae Sung;Lee, Kitae;Cha, Yong-Ho;Jang, Kyu-Ha;Jeon, Min Yong;Miginsky, Sergei V.;Jeong, Young Uk;Vinokurov, Nikolay A.
    • Journal of the Optical Society of Korea
    • /
    • v.18 no.4
    • /
    • pp.382-387
    • /
    • 2014
  • An all-reflective, simple noncollinear second harmonic (SH) autocorrelator is described for monitoring the shot-to-shot behavior of ultrashort high-power laser pulses. Two mirrors are used for the dispersion-free splitting of a pulse into two halves. One of the mirrors is able to adjust the delay time and angle between two halves of the laser pulse in a nonlinear crystal. We present the possibility of real-time measurement of the pulse duration, peak intensity (or energy), and the pointing jitters of a laser pulse, by analyzing the spatial profile of the SH autocorrelation signal measured by a CCD camera. The measurement of the shot-to-shot variation of those parameters will be important for the detailed characterization of laser accelerated electrons or protons.