• Title/Summary/Keyword: nonlinear optics

Search Result 216, Processing Time 0.025 seconds

Phase Separation and Precipitation Characteristics in ZnS doped Borosilicate Glasses (ZnS 미립자 분산 붕규산엽계 유리에서의 분상 및 미립자 석출 특성)

  • 이승환;류봉기
    • Journal of the Korean Ceramic Society
    • /
    • v.35 no.12
    • /
    • pp.1337-1342
    • /
    • 1998
  • To investigate an effect of phase separation on precipitation characteristics of ZnS microcrystals in ma-trix glass ZnS doped borosilicate glasses for nonlinear optical applications were prepared by melting and pre-cipitation process. ZnS dopant contributed to phase separation promotion which increased the phase separa-tion of the matrix glass within immiscibility region. It was also found that ZnS as phase separation promoter showed a similar contribution for some selected glass compositions in miscibility region. The precipitation of ZnS microcrystals occurred in thephase separable glass compoitions. The radius of ZnS microcrystals in-creased with increasing the heat treatment temperature and Na2O contents of matrix glass composition. The ZnS particle sizes estimated by effective mass approximation ranged from about 30 to 80${\AA}$ It was suf-ficiently small to show quantum confinement effect.

  • PDF

Phase Error Reduction for Multi-frequency Fringe Projection Profilometry Using Adaptive Compensation

  • Cho, Choon Sik;Han, Junghee
    • Current Optics and Photonics
    • /
    • v.2 no.4
    • /
    • pp.332-339
    • /
    • 2018
  • A new multi-frequency fringe projection method is proposed to reduce the nonlinear phase error in 3-D shape measurements using an adaptive compensation method. The phase error of the traditional fringe projection technique originates from various sources such as lens distortion, the nonlinear imaging system and a nonsinusoidal fringe pattern that can be very difficult to model. Inherent possibility of phase error appearing hinders one from accurate 3-D reconstruction. In this work, an adaptive compensation algorithm is introduced to reduce adaptively the phase error resulting from the fringe projection profilometry. Three different frequencies are used for generating the gratings of projector and conveyed to the four-step phase-shifting procedure to measure the objects of very discontinuous surfaces. The 3-D shape results show that this proposed technique succeeds in reconstructing the 3-D shape of any type of objects.

Quantitative Determination of the Chromophore Alignment Induced by Electrode Contact Poling in Self-Assembled NLO Materials

  • Kim, Tae-Dong;Luo, Jingdong;Jen, Alex K.-Y.
    • Bulletin of the Korean Chemical Society
    • /
    • v.30 no.4
    • /
    • pp.882-886
    • /
    • 2009
  • The electrode contact poling is one of the efficient tools to induce a stable polar order of nonlinear optical (NLO) chromophores in the solid film. Self-assembled NLO chromophores with high electro-optic (E-O) activities were utilized for quantitative determination of the chromophore order induced under contact poling by spectroscopic changes. We found that NLO chromophores rarely decompose under the high electric field during contact poling. The absorption spectra were de-convoluted into a sum of Gaussian components to separate energy transitions for a binary composite system which contains a secondary guest chromophore AJC146 in the self-assembled chromophore HDFD. Poling efficiency was significantly improved in the binary system compared to the individual components.

A Study on the Optical Pattern Recognition using pSDF and Nonlinear Correlator (pSDF와 비선형 상관기를 이용한 광패턴 인식에 관한 연구)

  • 정창규;임종태;김경태;박한규
    • Korean Journal of Optics and Photonics
    • /
    • v.1 no.2
    • /
    • pp.130-134
    • /
    • 1990
  • In this paper, pSDF-based referance image is reahzed. Using BJTC(binary joint transform correlator) as nonlinear correlator, optical pattern recognition for interclass discrimination is performed. Experimental results show that correlation peak intensity of one calss is two times higher than that of the other class, which indicates its superiority in discrimination sensitivity.

  • PDF

Optical Third-Harmonic Generation of Poly(2-Bromo-1,4-phenylenevinylene)

  • Hwang Do-Hoon;Lee Jeong-Ik;Lee Minyung;Shim Hong-Ku
    • Bulletin of the Korean Chemical Society
    • /
    • v.15 no.1
    • /
    • pp.25-28
    • /
    • 1994
  • Weakly electron withdrawing bromine substituted poly(2-bromo-1,4-phenylenevinylene) (PBrPV) was synthesized th-rough water-soluble precursor method. The linear and nonlinear optical properties of PBrPV were compared with those of poly(1,4-phenylenevinylene) (PPV). The third-order nonlinear optical susceptibility, X^{(3)}$, was measured by using third-harmonic generation (THG) technique at 1907 nm, fundamental wavelength. The calculated $X^{(3)}$ values of PPV and PBrPV were 3${\times}$ 10$^{-12}$ esu and 2${\times}$10$^{-12}$ esu, respectively.

Numerical Simulation of Soliton-like Pulse Formation in Diode-pumped Yb-doped Solid-state Lasers

  • Seong-Yeon, Lee;Byeong-Jun, Park;Seong-Hoon, Kwon;Ki-Ju, Yee
    • Current Optics and Photonics
    • /
    • v.7 no.1
    • /
    • pp.90-96
    • /
    • 2023
  • We numerically solve the nonlinear Schrödinger equation for pulse propagation in a passively mode-locked Yb:KGW laser. The soliton-like pulse formation as a result of balanced negative group-delay dispersion (GDD) and nonlinear self-phase modulation is analyzed. The cavity design and optical parameters of a previously reported high-power Yb:KGW laser were adopted to compare the simulation results with experimental results. The pulse duration and energy obtained by varying the small-signal gain or GDD reproduce the overall tendency observed in the experiments, demonstrating the reliability and accuracy of the model simulation and the optical parameters.

Single Logarithmic Amplification and Deep Learning-based Fixed-threshold On-off Keying Detection for Free-space Optical Communication

  • Qian-Wen Jing;Yan-Qing Hong
    • Current Optics and Photonics
    • /
    • v.8 no.3
    • /
    • pp.239-245
    • /
    • 2024
  • This paper proposes single logarithmic amplification (single-LA) and deep learning (DL)-based fixed-threshold on-off keying (OOK) detection for free-space optical (FSO) communication. Multilevel LAs (MLAs) can be used to mitigate intensity fluctuations in the received OOK signal by their nonlinear gain characteristics; however, it is ineffective in the case of high scintillation, owing to degradation of the OOK signal's extinction ratio. Therefore, a DL technique is applied to realize effective scintillation compensation in single-LA applications. Fully connected (FC) networks and fully connected neural networks (FCNN), which have nonlinear modeling characteristics, are deployed in this work. The performance of the proposed method is evaluated through simulations under various scintillation effects. Simulation results show that the proposed method outperforms the conventional adaptive-threshold-decision, single-LA-based, MLA-based, FC-based, and FCNN-based OOK detection techniques.

Nonlinear Diffusion and Structure Tensor Based Segmentation of Valid Measurement Region from Interference Fringe Patterns on Gear Systems

  • Wang, Xian;Fang, Suping;Zhu, Xindong;Ji, Jing;Yang, Pengcheng;Komori, Masaharu;Kubo, Aizoh
    • Current Optics and Photonics
    • /
    • v.1 no.6
    • /
    • pp.587-597
    • /
    • 2017
  • The extraction of the valid measurement region from the interference fringe pattern is a significant step when measuring gear tooth flank form deviation with grazing incidence interferometry, which will affect the measurement accuracy. In order to overcome the drawback of the conventionally used method in which the object image pattern must be captured, an improved segmentation approach is proposed in this paper. The interference fringe patterns feature, which is smoothed by the nonlinear diffusion, would be extracted by the structure tensor first. And then they are incorporated into the vector-valued Chan-Vese model to extract the valid measurement region. This method is verified in a variety of interference fringe patterns, and the segmentation results show its feasibility and accuracy.

Nonlinear, Optical and Luminescent Properties of xK2O-(33.3-x)BaO-16.7TiO2-50SiO2(mole%) Glasses (xK2O-(33.3-x)BaO-16.7TiO2-50SiO2(mole%) 유리의 비선형 광학 및 형광 특성)

  • Lee, Hoi-Kwan;Yoo, Eun-Sung;Chae, Su-Jin;Kang, Won-Ho
    • Journal of the Korean Ceramic Society
    • /
    • v.43 no.9 s.292
    • /
    • pp.569-574
    • /
    • 2006
  • Transparent glass-ceramics containing fresnoite crystals have been prepared by controlled heat treatment in $K_2O-BaO-TiO_2-SiO_2$ and their nonlinear optical and luminescent properties were investigated using Maker fringe method and Spectrofluorometer. The second harmonic generation was observed in all samples and the values decreased with increasing $K_2O$ content. The luminescence of blue light at ${\sim}482nm$ could be observed and it was shown that the luminescent property was controlled by the $K_2O$ content.

Nonlinear magneto-optic effect based on atomic coherence in Rb D1-line (Rb D1 전이선에서 원자결맞음에 의한 비선형 광자기 효과)

  • Moon, H.S.;Lee, W.K.;An, M.H.;Kim, J.B.
    • Korean Journal of Optics and Photonics
    • /
    • v.16 no.1
    • /
    • pp.7-12
    • /
    • 2005
  • We have observed the nonlinear magneto-optic effect(NMOE) based on atomic coherence in $^{87}$ Rb D$_1$-line using the Rb vapor cell containing 50 Torr of Ne. The width of the NMOE signal was measured to be 2$\pi$${\times}$464 Hz, when the peak-to-peak B-field variation was 1 mGauss. The result of this work may be applied to a high-sensitivity magnetometer.