• 제목/요약/키워드: nonlinear numerical analysis

검색결과 2,021건 처리시간 0.025초

동적기본해의 역FFT에 의한 비선형 지반-말뚝-구조계의 시간영역 지진응답 해석 (Time Domain Seismic Response Analysis of Nonlinear Soil-Pile-Structure Interaction System using Inverse FFT of Dynamic Fundamental Solution)

  • 김문겸;임윤묵;조석호;박종헌;정대희
    • 한국지진공학회:학술대회논문집
    • /
    • 한국지진공학회 2002년도 춘계 학술발표회 논문집
    • /
    • pp.125-132
    • /
    • 2002
  • In this study, a numerical method is developed for nonlinear analysis for soil-pile-structure interaction system in time domain. Finite elements considering material nonlinearity are used for the near field and boundary elements for the far field. In the near field, frame elements are used for modeling a pile and plane-strain elements for surrounding soil and superstructure. In. the far field, boundary element formulation using the dynamic fundamental solution is adopted and coupled with the near field. Transformation of stiffness matrices of boundary elements into time domain is performed by inverse FFT. Stiffness matrices in the near field and far field are coupled. Newmark direct time integration method is applied. Developed soil-pile-structure interaction analysis method is verified with available literature and commercial code. Also, parametric studies by developed numerical method are performed. And seismic response analysis is performed using actual earthquake records.

  • PDF

재료적 비선형을 고려한 Ρ-Version 유한요소해석 (Ρ-Version Finite Element Analysis for Material Nonlinearity)

  • 정우성;홍종현;우광성;신영식
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 1997년도 봄 학술발표회 논문집
    • /
    • pp.71-78
    • /
    • 1997
  • The high precision analysis by the p-version of the finite element method are fairly well established as highly efficient method for linear elastic problems, especially in the presence of stress singularity. It has been noted that the merits of p-version are accuracy, modeling simplicity, robustness, and savings in user's and CPU time. However, little has been done to exploit their benefits in elasto-plastic analysis. In this paper, the p-version finite element model is proposed for the materially nonlinear analysis that is based on the incremental theory of plasticity, the associated flow rule, and von-Mises yield criteria. To obtain the solution of nonlinear equation, the Newton-Raphson method and initial stiffness method, etc are used. Several numerical examples are tested with the help of the square plates with cutout, the thick-walled cylinder under internal pressure, and the center cracked plate under tensile loading. Those results are compared with the there cal solutions and the numerical solutions of ADINA software.

  • PDF

GEOMETRICALLY AND MATERIALLY NONLINEAR ANALYSIS FOR A COMPOSITE PRESSURE VESSEL

  • 도영대;김형근
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 1995년도 제4회 학술강연회논문집
    • /
    • pp.141-153
    • /
    • 1995
  • An incremental Total Lagrangian Formulation is implemented for the finite element analysis of laminated composite pressure vessel with consideration of the material and geometric nonlinearities. For large displacements/large rotations due to geometric nonlinearities, the incremental equations are derived using a quadratic approximation for the increment of the reference vectors in terms of the nodal rotation increments. This approach leads to a complete tangent stiffness matrix. For material nonlinearity, the analysis is performed by using the piecewise linear method, taking account of the nonlinear shear stress-strain relation. The results of numerical tests include the large deflection behavior of the selected composite shell problem. When compared with the previous analysis, tile results are in good agreement with them. As a practical example, filament wound pressure vessel is analyzed with consideration of the geometrically and materially nonlinearity. The numerical results agree fairly well with the existing experimental results.

  • PDF

Comparative analysis of fatigue assessment considering hydroelastic response using numerical and experimental approach

  • Kim, Beom-il;Jung, Byung-hoon
    • Structural Engineering and Mechanics
    • /
    • 제76권3호
    • /
    • pp.355-365
    • /
    • 2020
  • In this study, considering the hydroelastic response represented by the springing and whipping phenomena, we propose a method of estimating the fatigue damage in the longitudinal connections of ships. First, we screened the design sea states using a load transfer function based on the frequency domain. We then conducted a time domain fluid-structure interaction (FSI) analysis using WISH-FLEX, an in-house code based on the weakly nonlinear approach. To obtain an effective and robust analytical result of the hydroelastic response, we also conducted an experimental model test with a 1/50-scale backbone-based model of a ship, and compared the experimental results with those obtained from the FSI analysis. Then, by combining the results obtained from the hydroelastic response with those obtained from the numerical fatigue analysis, we developed a fatigue damage estimation method. Finally, to demonstrate the effectiveness of the developed method, we evaluated the fatigue strength for the longitudinal connections of the real ship and compared it with the results obtained from the model tests.

Efficiency of insulation layers in fire protection of FRP-confined RC columns-numerical study

  • El-Mahdya, Osama O.;Hamdy, Gehan A.;Hisham, Mohammed
    • Structural Engineering and Mechanics
    • /
    • 제77권5호
    • /
    • pp.673-689
    • /
    • 2021
  • This paper addresses the efficiency of thermal insulation layers applied to protect structural elements strengthened by fiber-reinforced polymers (FRP) in the case of fire event. The paper presents numerical modeling and nonlinear analysis of reinforced concrete (RC) columns externally strengthened by FRP and protected by thermal insulation layers when subjected to elevated temperature specified by standard fire tests, in order to predict their residual capacity and fire endurance. The adopted numerical approach uses commercial software includes heat transfer, variation of thermal and mechanical properties of concrete, steel reinforcement, FRP and insulation material with elevated temperature. The numerical results show good agreement with published results of full-scale fire tests. A parametric study was conducted to investigate the influence of several variables on the structural response and residual capacity of insulated FRP-confined columns loaded by service loads when exposed to fire. The residual capacity of FRP-confined RC column was affected by concrete grade and insulation material and was shown to improve substantially by increasing the concrete cover and insulation layer thickness. By increasing the VG insulation layer thickness 15, 32, 44, 57 mm, the loss in column capacity after 5 hours of fire was 30%, 13%, 7% and 5%, respectively. The obtained results demonstrate the validity of the presented approach for estimation of fire endurance and residual strength, as an alternative for fire testing, and for design of fire protection layers for FRP-confined RC columns.

수치 파동 수조를 이용한 부유체의 문풀 (Moon Pool) 유동해석 (Flow Analysis of Two-Dimensional Floating Body with Moon Pool Using a Numerical Wave Tank)

  • 구원철;이경록
    • 대한조선학회논문집
    • /
    • 제48권2호
    • /
    • pp.107-112
    • /
    • 2011
  • The aim of this study is to analyze the hydrodynamic properties of a 2D floating body with moon pool using a 2D fully nonlinear Numerical Wave Tank(NWT). This NWT was developed based on the Boundary Element Method(BEM) with potential theory and fully nonlinear free surface boundary conditions. Free surface elevations in the moon pool were calculated in the time domain for various frequencies of forced body motions. The added-mass and damping coefficients of the heaving body were also obtained. The present numerical results were compared with the analytic and experimental results and their accuracy was verified.

접선 강성방정식과 비선형 강성방정식을 이용한 비선형 해의 정확성 비교에 관한 연구 (A study on the Accurate Comparison of Nonlinear Solution Which Used Tangent Stiffness Equation and Nonlinear Stiffness Equation)

  • 김승덕;김남석
    • 한국공간구조학회논문집
    • /
    • 제10권2호
    • /
    • pp.95-103
    • /
    • 2010
  • 본 논문에서는 비선형 강성방정식의 정확성 향상에 관해 연구한다. 대공간 구조물은 대경간을 가볍게 만들기 위해 두께비를 얇게 만들어야 하므로, 구조설계시 구조불안정 검토가 중요하다. 쉘형 구조물의 구조불안정은 초기 조건에 매우 민감하게 반응하며, 이는 대변형을 수반하는 비선형 문제에 귀착하게 된다. 따라서 구조불안정을 정확히 알아보기 위해 비선형 강성방정식의 정확성이 향상 되어야 한다. 본 연구에서는 스페이스 트러스를 해석 모델로 하며 접선 강성방정식과 비선형 강성방정식의 두 이론을 프로그램으로 작성하여 비선형 해석을 수행한다. 두 이론의 해석 결과를 비교 고찰하여 비선형 강성방정식의 정확성 및 수렴성 향상에 대해 검토 한다.

  • PDF

센서의 설치 오차에 따른 자기베어링 지지 로터계의 안정도에 관한 연구 -비선형 자기력 모델에 대한 고찰- (A Stability Analysis of the Magnetic Bearing System Subject to Sensor dislocation Error -Discussion on Nonlinear Magnetic Force Model-)

  • 정재일;김종원
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1996년도 추계학술대회 논문집
    • /
    • pp.799-805
    • /
    • 1996
  • In many cases, the magnetic farce model is linearized at the origin in designing the controller of a magnetic bearing system. However. this linear assumption is violated by the unmodeled nonlinear effect such as sensor dislocation and backup bearing dislocation. Therefore, a direct probe into the nonlinear magnetic force model in an active magnetic bearing system is necessary. To analyze the nonlinear magnetic force model of a magnetic bearing system, phase plot analysis which is to plot the numerical solution of the nonlinear equation in several initial points in the interested region is applied. Phase plot analysis is used to observe a nonlinear dynamic system qualitatively (not quantitatively). With this method, we can get much useful information of the nonlinear system. Among this information, a bifurcation graph that represents stability and locations of fixed points is essential. From the bifurcation graph, a stability criterion of magnetic bearing system is derived.

  • PDF

전산유체역학을 이용한 항공기 프로펠러 공력특성 연구 (Application of CFD in The Analysis of Aerodynamic Characteristics for Aircraft Propellers)

  • 조규철;김효진;박일주;장성복
    • 한국항공우주학회지
    • /
    • 제40권11호
    • /
    • pp.917-926
    • /
    • 2012
  • 본 연구는 고효율 복합재 프로펠러를 개발하기 위하여, 항공기 프로펠러 효율 특성 해석을 수행하였다. 비선형 수치해석을 이용하여 프로펠러의 공력 특성을 분석하고, 풍동 실험결과와 비교 분석하였다. 유동해석코드는 비선형 유동방정식인 RANS(Reynolds Averaged Navier-Stocks)를 수치해석화한 코드를 사용하였다. 해석 결과, 수치해석을 통하여 얻어진 프로펠러의 추력 및 출력계수는 실험결과와 비교하여 다소 높게 분석되었으며, 추력과 출력의 비로부터 계산된 프로펠러 효율은 실험결과와 잘 부합하는 것으로 확인하였다.

Large strain nonlinear model of lead rubber bearings for beyond design basis earthquakes

  • Eem, Seunghyun;Hahm, Daegi
    • Nuclear Engineering and Technology
    • /
    • 제51권2호
    • /
    • pp.600-606
    • /
    • 2019
  • Studies on the application of the lead rubber bearing (LRB) isolation system to nuclear power plants are being carried out as one of the measures to improve seismic performance. Nuclear power plants with isolation systems require seismic probabilistic safety assessments, for which the seismic fragility of the structures, systems, and components needs be calculated, including for beyond design basis earthquakes. To this end, seismic response analyses are required, where it can be seen that the behaviors of the isolation system components govern the overall seismic response of an isolated plant. The numerical model of the LRB used in these seismic response analyses plays an important role, but in most cases, the extreme performance of the LRB has not been well studied. The current work therefore develops an extreme nonlinear numerical model that can express the seismic response of the LRB for beyond design basis earthquakes. A full-scale LRB was fabricated and dynamically tested with various input conditions, and test results confirmed that the developed numerical model better represents the behavior of the LRB over previous models. Subsequent seismic response analyses of isolated nuclear power plants using the model developed here are expected to provide more accurate results for seismic probabilistic safety assessments.