Browse > Article
http://dx.doi.org/10.12989/sem.2021.77.5.673

Efficiency of insulation layers in fire protection of FRP-confined RC columns-numerical study  

El-Mahdya, Osama O. (Department of Civil Engineering, Faculty of Engineering at Shoubra, Benha University)
Hamdy, Gehan A. (Department of Civil Engineering, Faculty of Engineering at Shoubra, Benha University)
Hisham, Mohammed (Department of Civil Engineering, Faculty of Engineering at Shoubra, Benha University)
Publication Information
Structural Engineering and Mechanics / v.77, no.5, 2021 , pp. 673-689 More about this Journal
Abstract
This paper addresses the efficiency of thermal insulation layers applied to protect structural elements strengthened by fiber-reinforced polymers (FRP) in the case of fire event. The paper presents numerical modeling and nonlinear analysis of reinforced concrete (RC) columns externally strengthened by FRP and protected by thermal insulation layers when subjected to elevated temperature specified by standard fire tests, in order to predict their residual capacity and fire endurance. The adopted numerical approach uses commercial software includes heat transfer, variation of thermal and mechanical properties of concrete, steel reinforcement, FRP and insulation material with elevated temperature. The numerical results show good agreement with published results of full-scale fire tests. A parametric study was conducted to investigate the influence of several variables on the structural response and residual capacity of insulated FRP-confined columns loaded by service loads when exposed to fire. The residual capacity of FRP-confined RC column was affected by concrete grade and insulation material and was shown to improve substantially by increasing the concrete cover and insulation layer thickness. By increasing the VG insulation layer thickness 15, 32, 44, 57 mm, the loss in column capacity after 5 hours of fire was 30%, 13%, 7% and 5%, respectively. The obtained results demonstrate the validity of the presented approach for estimation of fire endurance and residual strength, as an alternative for fire testing, and for design of fire protection layers for FRP-confined RC columns.
Keywords
fiber reinforced polymers; columns; elevated temperature; fire protection; fire resistance; numerical modeling; finite elements; nonlinear analysis;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 Park, S.H., Manzello, S.L., Bentz, D.P. and Mizukami, T. (2009), "Determining thermal properties of gypsum board at elevated temperatures", Fire Mater., 33, 237-250. https://doi.org/10.1002/fam.1017.   DOI
2 Torelli, G., Mandal, P., Gillie, M. and Tran, V.X. (2016), "Concrete strains under transient thermal conditions: a state-of-the-art review", Eng. Struct., 127, 172-188. https://doi.org/10.1016/j.engstruct.2016.08.021.   DOI
3 Hawileh, R.A., Abdalla J.A., Hasan, S.S., Ziyada, M.B. and Abu-Obeidah, A. (2016), "Models for predicting elastic modulus and tensile strength of carbon, basalt and hybrid carbon-basalt FRP laminates at elevated temperatures", Constr. Build. Mater., 114, 364-373. http://dx.doi.org/10.1016%2Fj.conbuildmat.2016.03.175.   DOI
4 Hawileh, R.A., Abu-Obeidah, A., Abdalla, J.A. and Al-Tamimi, A. (2015), "Temperature effect on the mechanical properties of carbon, glass and carbon-glass FRP laminates", Constr. Build. Mater., 75, 342-348. https://doi.org/10.1016/j.conbuildmat.2014.11.020.   DOI
5 Hertz K.D. (2005), "Concrete strength for fire safety design", Mag. Concrete Res., 57(8), 445-453. https://doi.org/10.1680/macr.2005.57.8.445.   DOI
6 Kodur, V.K.R., Ghani, B.A., Sultan, M.A., Lie T.T. and El-Shayeb, M. (2001), "A model for evaluating the fire resistance of contour-protected steel columns", Struct. Eng. Mech., 12(5), 559-572. http://dx.doi.org/10.12989/sem.2001.12.5.559.   DOI
7 Lam, L. and Teng, J.G. (2003), "Design-oriented stress-strain model for FRP confined concrete", Constr. Build. Mater., 17(6-7), 471-489. http://dx.doi.org/10.1061/(ASCE)CC.1943-5614.0000651.   DOI
8 Law, A. and Bisby, L. (2020), "The rise and rise of fire resistance", Fire Saf. J., 116, 103188. https://doi.org/10.1016/j.firesaf.2020.103188.   DOI
9 Lie, T.T. (1992), "Structural fire protection", Report No.78; American Society of Civil Engineers Manuals and Reports on Engineering Practice, ASCE, New York, NY, USA.
10 Lie, T.T. and Celikkol, B. (1991), "Method to calculate the fire resistance of circular reinforced concrete columns", ACI Mater. J., 88(1), 84-91.
11 Lie, T.T. and Kodur, V.K.R. (1995), "Thermal properties of fiber reinforced concrete at elevated temperatures", Research Report No. 04-01, Institute for Research in Construction, National Research Council, Canada.
12 Cramer, S.M., Friday, O.M., White, R.H. and Sriprutkiat, G. (2003), "Mechanical properties of gypsum board at elevated temperatures", Fire Mater., 27, 33-42.
13 Cree, C., Chowdhury, E.U., Bisby, L.A., Green, M.F. and Benichou, N. (2012), "Performance in fire of FRP strengthened and insulated reinforced concrete columns", Fire Saf. J., 54, 86-95. https://doi.org/10.1016/j.firesaf.2012.08.006.   DOI
14 Dimitrienko, Y.I. (1999), Thermo-Mechanics of Composites under High Temperatures, Springer, Netherland.
15 Dotreppe, J.C., Franssen, F.M. and Vanderzeypen, Y. (1999), "Calculation method for design of reinforced concrete columns under fire conditions", ACI Struct. J., 96(1), 9-18.
16 EN 1992-1-2 (2004), Eurocode 2: Design of Concrete Structures-Part 1-2: General Rules-Structural Fire Design, European Committee for Standardization, Brussels, Belgium.
17 Franssen, J.M. and Dotreppe, J.C. (2003), "Fire tests and calculation methods for circular concrete columns", Fire Technol., 39, 89-97. https://doi.org/10.1023/A:1021783311892.   DOI
18 EN 1993-1-2 (2005), Eurocode 3: Design of Steel Structures-Part 1-2: General Rules-Structural Fire Design, European Committee for Standardization, Brussels, Belgium.
19 Firmo, J.P., Correia, J.R. and Bisby, L.A. (2015), "Fire behaviour of FRP-strengthened reinforced concrete structural elements: a state-of-the-art-review", Compos. B: Eng., 80, 198-216. https://doi.org/10.1016/j.compositesb.2015.05.045.   DOI
20 Foster, S. and Bisby, L. (2008), "Fire survivability of externally bonded FRP strengthening systems", J. Compos. Constr., ASCE, 12(5), 553-561. https://doi.org/10.1061/(ASCE)1090-0268(2008)12:5(553).   DOI
21 Griffis, C.A., Masmura, R.A. and Chang, C.I. (1981), "Thermal response of graphite epoxy composite subjected to rapid heating", J. Compos. Mater., 15, 427-440. https://doi.org/10.1177/002199838101500503.   DOI
22 Bai, Y., Keller, T. and Vallee, T. (2008), "Modeling of stiffness of FRP composites under elevated and high temperatures", Compos. Sci. Technol., 68(15-16), 3309-3106. https://doi.org/10.1016/j.compscitech.2008.07.005.   DOI
23 Benichou, N. and Sultan, M.A. (2005), "Thermal properties of lightweight-framed construction components at elevated temperatures", Fire Mater., 29(3), 165-179. https://doi.org/10.1002/fam.880.   DOI
24 Youssef, M.N., Feng, M.Q. and Mosallam, A.S. (2007), "Stress-strain model for concrete confined by FRP composites", Compos. Part B: Eng., 38, 614-628. https://doi.org/10.1016/j.compositesb.2006.07.020.   DOI
25 Bisby, L.A. (2003), "Fire behavior of fiber-reinforced polymer (FRP) reinforced or confined concrete", Ph.D. Thesis, Queen's University, Kingston, Ontario, Canada.
26 Bisby, L.A., Green, M.F. and Kodur, V.K.R. (2005), "Modeling the behavior of fiber reinforced polymer-confined concrete columns exposed to fire", J. Compos. Constr., ASCE, 9(1), 15-24. https://doi.org/10.1061/(ASCE)1090-0268(2005)9:1(15).   DOI
27 Bisby, L.A., Williams, B.K., Green, M.F. and Kodur, V.K.R. (2002), "Studies on the fire behavior of FRP reinforced and/or strengthened concrete members", Proceedings of the Second International Conference on Durability of Composites for Construction (CDCC'02), Montreal, Quebec, Canada, May.
28 Uematsu, Y., Kitamura, T. and Ohtani R. (1995), "Delamination behavior of a carbon fiber reinforced thermoplastic polymer at high temperatures", Compos. Sci. Technol., 53, 333-341. https://doi.org/10.1016/0266-3538(95)00005-4.   DOI
29 Wang, Y.C. and Kodur, V.K.R. (1999), "An approach for calculating the failure loads of unprotected concrete filled steel columns exposed to fire", Struct. Eng. Mech., 7(2), 127-145. http://dx.doi.org/10.12989/sem.1999.7.2.127.   DOI
30 Williams, B.K., Bisby, L.A., Kodur, V.K.R., Green, M.F. and Chowdhury E. (2006), "Fire insulation schemes for FRPstrengthened concrete slabs", Compos.: Part A, 37, 1151-1160. https://doi.org/10.1016/j.compositesa.2005.05.028.   DOI
31 Mallick, P.K. (1988), Fiber-Reinforced Composites: Materials, Manufacturing and Design, Marcel Dekker Inc., New York, USA.
32 Mouritz, A.P., Feih, S., Kandare, E., Mathys, Z., Gibson, A.G., Des Jardin, P.E., Case, S.W. and Lattimer, B.Y. (2009), "Review of fire structural modelling of polymer composites", Compos.: Part A, 40, 1800-1814. https://doi.org/10.1016/j.compositesa.2009.09.001.   DOI
33 Obaidat, Y.T. and Haddad, R.H. (2016), "Prediction of residual mechanical behavior of heat-exposed LWAC short column: a NLFE model", Struct. Eng. Mech., 57(2), 265-280. http://dx.doi.org/10.12989/sem.2016.57.2.265.   DOI
34 Chowdhury, E.U., Bisby, L.A., Green, M.F. and Kodur, V.K.R. (2007), "Investigation of insulated FRP-wrapped reinforced concrete columns in fire", Fire Saf. J., 42, 452-460. https://doi.org/10.1016/j.firesaf.2006.10.007.   DOI
35 Bratina, S., Planinc, I., Saje, M. and Turk G. (2003), "Non-linear fire-resistance analysis of reinforced concrete beams", Struct. Eng. Mech., 16(6), 695-712. http://dx.doi.org/10.12989/sem.2003.16.6.695.   DOI
36 Choi, J., Haj-Ali, R. and Kim H.S. (2012), "Integrated fire dynamic and thermomechanical modeling of a bridge under fire", Struct. Eng. Mech., 42(6), 815-829. http://dx.doi.org/10.12989/sem.2012.42.6.815.   DOI
37 Chowdhury, E., Bisby, L., Green, M., Benichou, N. and Kodur V.K.R. (2012), "Heat transfer and structural response modelling of FRP confined rectangular concrete columns in fire", Constr. Build. Mater., 32, 77-89. https://doi.org/10.1016/j.conbuildmat.2010.12.064.   DOI
38 ANSYS® v.12 (2009), Nonlinear Analysis Computer Program, Release 12.1.0, Theory Reference Manual, ANSYS Inc., Canonsburg, PA, USA.
39 ACI 440.2R-17 (2017), Guide for the Design and Construction of Externally bonded FRP Systems for Strengthening Concrete Structures, American Concrete Institute, Farmington Hills, MI, USA.
40 Anderberg, Y. and Thelandersson, S. (1976), "Stress and deformation characteristics of concrete at high temperature: 2. Experimental investigation and material behavior model", Bull. No. 46, Lund University.
41 Arioz, O. (2007), "Effects of elevated temperatures on properties of concrete", Fire Saf. J., 42, 516-522. https://doi.org/10.1016/j.firesaf.2007.01.003.   DOI
42 ASTM E119-20 (2020), Standard Methods for Fire Tests of Building Construction and Materials, American Society for Testing and Materials, West Conshohocken, PA, USA.