• Title/Summary/Keyword: nonlinear numerical analysis

Search Result 1,996, Processing Time 0.026 seconds

An Observation of the Application of a Magnetic Force to the Bicycle Cushion System and its Nonlinearity (자석 척력의 자전거 쿠션장치 적용 및 비선형성 고찰)

  • Yun, Seong-Ho
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.17 no.1
    • /
    • pp.42-47
    • /
    • 2018
  • This paper describes the dynamical behavior of the bicycle and its nonlinear effect when magnetic repulsive forces are applied to the bicycle cushion system. A finite-element method was used to obtain its reliabilities by comparing the experimental and numerical values and select the proper magnet sizes. The Equivalent spring stiffness values were evaluated in terms of both linear and nonlinear approximations, where the nonlinear effect was specifically investigated for the ride comfort. The corresponding equations of linear and nonlinear motion were derived for the numerical model with three degrees of freedom. Dynamic behaviors were observed when the bicycle ran over a curvilinear road in the form of a sinusoidal curve. The analysis in this paper for the observed nonlinearity of magnetic repulsive forces will be a useful guide to more accurately predict the cushion design for any vehicle system.

Flow-induced instability and nonlinear dynamics of a tube array considering the effect of a clearance gap

  • Lai, Jiang;Sun, Lei;Li, Pengzhou
    • Nuclear Engineering and Technology
    • /
    • v.51 no.6
    • /
    • pp.1650-1657
    • /
    • 2019
  • Fluidelastic instability and nonlinear dynamics of tube bundles is a key issue in a steam generator. Especially, once the post-instability motion of the tube becomes larger than the clearance gap to other tubes, effective contact or impact between the tubes under consideration and the other tube inevitable. There is seldom theoretical analysis to the nonlinear dynamic characteristics of a tube array in two-phase flow. In this paper, experimental and numerical studies were utilized to obtain the critical velocity of the flow-induced instability of a rotated triangular tube array. The calculation results agreed well with the experimental data. To explore the post-instability dynamics of the tube array system, a Runge-Kutta scheme was used to solve the nonlinear governing equations of tube motion. The numerical results indicated that, when the flow pitch velocity is larger than the critical velocity, the tube array system is undergoing a limit cycle motion, and the dynamic characteristics of the tube array are almost similar for different void fractions.

Nonlinear finite element vibration analysis of functionally graded nanocomposite spherical shells reinforced with graphene platelets

  • Xiaojun Wu
    • Advances in nano research
    • /
    • v.15 no.2
    • /
    • pp.141-153
    • /
    • 2023
  • The main objective of this paper is to develop the finite element study on the nonlinear free vibration of functionally graded nanocomposite spherical shells reinforced with graphene platelets under the first-order shear deformation shell theory and von Kármán nonlinear kinematic relations. The governing equations are presented by introducing the full asymmetric nonlinear strain-displacement relations followed by the constitutive relations and energy functional. The extended Halpin-Tsai model is utilized to specify the overall Young's modulus of the nanocomposite. Then, the finite element formulation is derived and the quadrilateral 8-node shell element is implemented for finite element discretization. The nonlinear sets of dynamic equations are solved by the use of the harmonic balance technique and iterative method to find the nonlinear frequency response. Several numerical examples are represented to highlight the impact of involved factors on the large-amplitude vibration responses of nanocomposite spherical shells. One of the main findings is that for some geometrical and material parameters, the fundamental vibrational mode shape is asymmetric and the axisymmetric formulation cannot be appropriately employed to model the nonlinear dynamic behavior of nanocomposite spherical shells.

FE model updating and seismic performance evaluation of a historical masonry clock tower

  • Gunaydin, Murat;Erturk, Esin;Genc, Ali Fuat;Okur, Fatih Yesevi;Altunisik, Ahmet Can;Tavsan, Cengiz
    • Earthquakes and Structures
    • /
    • v.22 no.1
    • /
    • pp.65-82
    • /
    • 2022
  • This paper presents a structural performance assessment of a historical masonry clock tower both using numerical and experimental process. The numerical assessment includes developing of finite element model with considering different types of soil-structure interaction systems, identifying the numerical dynamic characteristics, finite element model updating procedure, nonlinear time-history analysis and evaluation of seismic performance level. The experimental study involves determining experimental dynamic characteristics using operational modal analysis test method. Through the numerical and experimental processes, the current structural behavior of the masonry clock tower was evaluated. The first five experimental natural frequencies were obtained within 1.479-9.991 Hz. Maximum difference between numerical and experimental natural frequencies, obtained as 20.26%, was reduced to 4.90% by means of the use of updating procedure. According to the results of the nonlinear time-history analysis, maximum displacement was calculated as 0.213 m. The maximum and minimum principal stresses were calculated as 0.20 MPa and 1.40 MPa. In terms of displacement control, the clock tower showed only controlled damage level during the applied earthquake record.

Seismic response analysis of layered soils considering effect of surcharge mass using HFTD approach. Part II: Nonlinear HFTD and numerical examples

  • Saffarian, Mohammad A.;Bagheripour, Mohammad H.
    • Geomechanics and Engineering
    • /
    • v.6 no.6
    • /
    • pp.531-544
    • /
    • 2014
  • Studies of earthquakes over the last 50 years and the examination of dynamic soil behavior reveal that soil behavior is highly nonlinear and hysteretic even at small strains. Nonlinear behavior of soils during a seismic event has a predominant role in current site response analysis approaches. Common approaches to ground response analysis include linear, equivalent linear and nonlinear methods. These methods of ground response analysis may also be categorized into time domain and frequency domain concepts. Simplicity in developing analytical relations and accuracy in considering soils' dynamic properties dependency to loading frequency are benefits of frequency domain analysis. On the other hand, nonlinear methods are complicated and time consuming mainly because of their step by step integrations in time intervals. In part Ι of this paper, governing equations for seismic response analysis of surcharged and layered soils were developed using fundamental of wave propagation theory based on transfer function and boundary conditions. In this part, nonlinear seismic ground response is analyzed using extended HFTD method. The extended HFTD method benefits Newton-Raphson procedure which applies regular iterations and follows soils' fundamental stress-strain curve until convergence is achieved. The nonlinear HFTD approach developed here are applied to some examples presented in this part of the paper. Case studies are carried in which effects of some influencing parameters on the response are investigated. Results show that the current approach is sufficiently accurate, efficient, and fast converging. Discussions on the results obtained are presented throughout this part of the paper.

Chaos in PID Controlled Nonlinear Systems

  • Ablay, Gunyaz
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.4
    • /
    • pp.1843-1850
    • /
    • 2015
  • Controlling nonlinear systems with linear feedback control methods can lead to chaotic behaviors. Order increase in system dynamics due to integral control and control parameter variations in PID controlled nonlinear systems are studied for possible chaos regions in the closed-loop system dynamics. The Lur’e form of the feedback systems are analyzed with Routh’s stability criterion and describing function analysis for chaos prediction. Several novel chaotic systems are generated from second-order nonlinear systems including the simplest continuous-time chaotic system. Analytical and numerical results are provided to verify the existence of the chaotic dynamics.

Nonlinear dynamic analysis of reinforced concrete shell structures

  • Kim, T.H.;Park, J.G.;Choi, J.H.;Shin, H.M.
    • Structural Engineering and Mechanics
    • /
    • v.34 no.6
    • /
    • pp.685-702
    • /
    • 2010
  • In this paper, a nonlinear finite element procedure is presented for the dynamic analysis of reinforced concrete shell structures. A computer program, named RCAHEST (Reinforced Concrete Analysis in Higher Evaluation System Technology), was used. A 4-node flat shell element with drilling rotational stiffness was used for spatial discretization. The layered approach was used to discretize the behavior of concrete and reinforcement in the thickness direction. Material nonlinearity was taken into account by using tensile, compressive and shear models of cracked concrete and a model of reinforcing steel. The smeared crack approach was incorporated. The low-cycle fatigue of both concrete and reinforcing bars was also considered to predict a reliable dynamic behavior. The solution to the dynamic response of reinforced concrete shell structures was obtained by numerical integration of the nonlinear equations of motion using Hilber-Hughes-Taylor (HHT) algorithm. The proposed numerical method for the nonlinear dynamic analysis of reinforced concrete shell structures was verified by comparison of its results with reliable experimental and analytical results.

Nonlinear Transient Heat Transfer Analysis Based on LANCZOS Coordinates (LANCZOS 알고리즘에 기초한 비선형 트랜지언트 열전달 해석)

  • Im, Chang Kyun;Chang, Sung Pil
    • Journal of Korean Society of Steel Construction
    • /
    • v.10 no.2 s.35
    • /
    • pp.317-326
    • /
    • 1998
  • This paper describes a reduced finite element formulation for nonlinear transient heat transfer analysis based on Lanczos Algorithm. In the proposed reduced formulation all material nonlinearities of irradiation boundary element are included using the pseudo force method and numerical time integration of the reduced formulation is conducted by Galerkin method. The results of numerical examples demonstrate the applicability and the accuracy of the proposed method for the nonlinear transient heat transfer analysis.

  • PDF

A Computational Platform for Nonlinear Analysis of Prestressed Concrete Shell Structures

  • Kim, Tae-Hoon;Shin, Hyun-Mock
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.23 no.6
    • /
    • pp.593-606
    • /
    • 2010
  • This paper presents a formulation to include the prestressing effects in available numerical models for the nonlinear material, instantaneous and long-term analysis of prestressed concrete shell structures, based on the displacement formulation of the finite element method. A four-node flat shell element is adopted for nonlinear analysis of prestressed concrete shells. This element was incorporated into an existing general-purpose finite element analysis program. A distinctive characteristic of the element is its capability to simulate the behavior of shells subjected to a variety of types of loading and drilling rotational stiffness. Consequently, the response of prestressed concrete shell structures can be predicted accurately using the proposed nonlinear finite element procedure.

Evaluation of dynamic increase factor in progressive collapse analysis of steel frame structures considering catenary action

  • Ferraioli, Massimiliano
    • Steel and Composite Structures
    • /
    • v.30 no.3
    • /
    • pp.253-269
    • /
    • 2019
  • This paper investigates the effects of the tensile catenary action on dynamic increase factor (DIF) in the nonlinear static analysis for progressive collapse of steel-frame buildings. Numerical analyses were performed to verify the accuracy of the empirical and analytical expressions proposed in the literature in cases where the catenary action is activated. For this purpose, nonlinear static and dynamic analyses of a series of steel moment frame buildings with a different number of spans and stories were carried out following the alternate path method. Different column removal scenarios were considered as separate load cases. The dynamic increase factor that approximately compensates for the dynamic effects in the nonlinear static analysis was selected so to match results from the nonlinear dynamic analysis. The study results showed that the many expressions in literature may not work in cases where the catenary stage is fully developed.