• 제목/요약/키워드: nonlinear method

검색결과 7,865건 처리시간 0.037초

A New Method for Identifying Higher Volterra Kernel Having the Same Time Coordinate for Nonlinear System

  • Nishiyama, Eiji;Harada, Hiroshi;Rong, Li;Kashiwagi, Hiroshi
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1999년도 제14차 학술회의논문집
    • /
    • pp.137-140
    • /
    • 1999
  • A lot of researcher have proposed a method of kernel identifying nonlinear system by use of Wiener kernels[6-7] or Volterra kernel[5] and so on. In this research, the authors proposed a method of identifying Volterra kernels for nonlinear system by use of pseudorandom M-sequence in which a crosscorrelation function between input and output of a nonlinear system is taken[4]. we can be applied to an MISO nonlinear system or a system which depends on its input amplitude[2]. But, there exist many systems in which it is difficult to determine a Volterra kernel having the same time coordinate on the crosscorrelation function. In those cases, we have to estimate Volterra kernel by using its neighboring points[4]. In this paper, we propose a new method for not estimating but obtaining Volterra kernel having the same time coordinate using calculation between the neighboring points. Some numerical simulations show that this method is effective for obtaining higher order Volterra kernel of nonlinear control systems.

  • PDF

등가정하중법을 이용한 차량 전면 구조물의 비선형 동적 반응 구조최적설계 (Nonlinear Dynamic Response Structural Optimization of an Automobile Frontal Structure Using Equivalent Static Loads)

  • 윤식;정성범;박경진
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2008년도 추계학술대회A
    • /
    • pp.1156-1161
    • /
    • 2008
  • Nonlinear dynamic analysis is generally used in automobile crash analysis and structural optimization considering crashworthiness uses the results of nonlinear dynamic analysis. Automobile crash optimization has high nonlinearity and difficulty in calculating sensitivity. Recently the equivalent static load (ESL) method has been proposed in order to overcome these difficulties. The ESL is the static load set generating the same displacement field as the nonlinear dynamic displacement field at each time step in dynamic analysis. From various researches regarding the ESL method, it has been proved that the ESL method is fairly useful. The ESL method can mathematically optimize a crash optimization problem through nonlinear analysis and well developed static optimization. The ESL is applied to nonlinear dynamic structural optimization of the automobile frontal impact problem. An automobile bumper is optimized. The mass of the structure is minimized while some constraints are satisfied.

  • PDF

Nonlinear free vibration analysis of moderately thick viscoelastic plates with various geometrical properties

  • Nasrin Jafari;Mojtaba Azhari
    • Steel and Composite Structures
    • /
    • 제48권3호
    • /
    • pp.293-303
    • /
    • 2023
  • In this paper, geometrically nonlinear free vibration analysis of Mindlin viscoelastic plates with various geometrical and material properties is studied based on the Von-Karman assumptions. A novel solution is proposed in which the nonlinear frequencies of time-dependent plates are predicted according to the nonlinear frequencies of plates not dependent on time. This method greatly reduces the cost of calculations. The viscoelastic properties obey the Boltzmann integral law with constant bulk modulus. The SHPC meshfree method is employed for spatial discretization. The Laplace transformation is used to convert equations from the time domain to the Laplace domain and vice versa. Solving the nonlinear complex eigenvalue problem in the Laplace-Carson domain numerically, the nonlinear frequencies, the nonlinear viscous damping frequencies, and the nonlinear damping ratios are verified and calculated for rectangular, skew, trapezoidal and circular plates with different boundary conditions and different material properties.

Nonlinear vibration and primary resonance of multilayer functionally graded shallow shells with porous core

  • Kamran Foroutan;Liming Dai
    • Steel and Composite Structures
    • /
    • 제48권3호
    • /
    • pp.335-351
    • /
    • 2023
  • This research studies the primary resonance and nonlinear vibratory responses of multilayer functionally graded shallow (MFGS) shells under external excitations. The shells considered with functionally graded porous (FGP) core and resting on two types of nonlinear viscoelastic foundations (NVEF) governed by either a linear model with two parameters of Winkler and Pasternak foundations or a nonlinear model of hardening/softening cubic stiffness augmented by a Kelvin-Voigt viscoelastic model. The shells considered have three layers, sandwiched by functionally graded (FG), FGP, and FG materials. To investigate the influence of various porosity distributions, two types of FGP middle layer cores are considered. With the first-order shear deformation theory (FSDT), Hooke's law, and von-Kármán equation, the stress-strain relations for the MFGS shells with FGP core are developed. The governing equations of the shells are consequently derived. For the sake of higher accuracy and reliability, the P-T method is implemented in numerically analyzing the vibration, and the method of multiple scales (MMS) as one of the perturbation methods is used to investigate the primary resonance. The results of the present research are verified with the results available in the literature. The analytical results are compared with the P-T method. The influences of material, geometry, and nonlinear viscoelastic foundation parameters on the responses of the shells are illustrated.

A simple method for treating nonlinear control systems through state feedback

  • Han, Kyeng-Cheng
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1989년도 한국자동제어학술회의논문집; Seoul, Korea; 27-28 Oct. 1989
    • /
    • pp.931-933
    • /
    • 1989
  • If the nonlinear term in a nonlinear control system equation can be deleted by state feedback control, the original system becomes a linear system. For this linear control system, many well known methods may be used to handle it, and then reverse it back to nonlinear form. Many problems of nonlinear control systems can be solved in this way. In this paper, this method will be used to transfer the identification problem of nonlinear systems into a linear control problem. The nonlinear observer is established by constructing linear observer. Then the state control of nonlinear systems is realized. Finally, the technique of the PID controller obtained by using bang-bang tracker as a differentiator provides a stronger robust controller. Even though the method in this paper may not theoretically perfect, many numerical simulations show that it is applicable.

  • PDF

초음파 비선형 전파특성을 이용한 부분 열화 재료의 평가 (The Evaluation of Partially Degraded Material Using Nonlinear Propagation Characteristics of Ultrasonic Wave)

  • 김경조;장경영;야마와키히사시
    • 대한기계학회논문집A
    • /
    • 제25권2호
    • /
    • pp.214-219
    • /
    • 2001
  • In this paper, the nonlinear behavior of ultrasonic wave in partially degraded material is considered. For this aim, FDM(finite difference method) model for the nonlinear wave equation was developed with the restriction to the 1-D longitudinal wave motion and how the partial degradation in material contributes to the detected nonlinear parameter was analyzed quantitatively. In order to verify the rightness of this simulation method, the relation between the detected nonlinear parameter and the continuous distribution of degradation obtained from simulation was compared with experiment results and the simulation and experiment results showed similar tendency. It can be known from simulation result that the degree of degradation, the range of degradation and the continuous distribution of degradation have strong correlation with the detected nonlinear parameter. As it was possible in these simulations that only special part is assumed as degraded one, the quantitative evaluation of partially degraded material may be obtained by using this method.

비선형 불규칙 진동 보의 등가에너지법에 의한 선형화 (Linearization of Nonlinear Random Vibration Beam by Equivalent Energy Method)

  • 이신영
    • 한국공작기계학회논문집
    • /
    • 제17권1호
    • /
    • pp.71-76
    • /
    • 2008
  • Nonlinear dynamic system under random excitation was analyzed by using stochastic method. A linearization method was used in order to linearize non-linear structural characteristics but the parametric excitation was used as it was given. An equivalent energy method which equalizes the expectation value of energy of the original nonlinear system and that of quasi-linearized system was proposed. Ito's differential rule was applied to obtain steady state moments. Quasi-linearization coefficients can be obtained the iterative calculation of linearization scheme and steady state moments. Monte Carlo simulation was used to verify the results of the proposed method. Nonlinear vibration of a slender beam was analyzed in this research. The analysis results were compared with Monte Carlo simulation result and showed good agreement. As the spectral density of the given excitation increased, the analysis results showed the better agreement with Monte Carlo simulation.

Detection and parametric identification of structural nonlinear restoring forces from partial measurements of structural responses

  • Lei, Ying;Hua, Wei;Luo, Sujuan;He, Mingyu
    • Structural Engineering and Mechanics
    • /
    • 제54권2호
    • /
    • pp.291-304
    • /
    • 2015
  • Compared with the identification of linear structures, it is more challenging to conduct identification of nonlinear structure systems, especially when the locations of structural nonlinearities are not clear in structural systems. Moreover, it is highly desirable to develop methods of parametric identification using partial measurements of structural responses for practical application. To cope with these issues, an identification method is proposed in this paper for the detection and parametric identification of structural nonlinear restoring forces using only partial measurements of structural responses. First, an equivalent linear structural system is proposed for a nonlinear structure and the locations of structural nonlinearities are detected. Then, the parameters of structural nonlinear restoring forces at the locations of identified structural nonlinearities together with the linear part structural parameters are identified by the extended Kalman filter. The proposed method simplifies the identification of nonlinear structures. Numerical examples of the identification of two nonlinear multi-story shear frames and a planar nonlinear truss with different nonlinear models and locations are used to validate the proposed method.

부구조물 합성법을 이용한 접는 미사일 조종날개 모델 수립 (Model Establishment of a Deployable Missile Control Fin Using Substructure Synthesis Method)

  • 김대관;배재성;이인;한재흥
    • 한국소음진동공학회논문집
    • /
    • 제15권7호
    • /
    • pp.813-820
    • /
    • 2005
  • A deployable missile control fin has some structural nonlinearities because of the worn or loose hinges and the manufacturing tolerance. The structural nonlinearity cannot be eliminated completely, and exerts significant effects on the static and dynamic characteristics of the control fin. Thus, It is important to establish the accurate deployable missile control fin model. In the present study, the nonlinear dynamic model of 4he deployable missile control fin is developed using a substructure synthesis method. The deployable missile control fin can be subdivided Into two substructures represented by linear dynamic models and a nonlinear hinge with structural nonlinearities. The nonlinear hinge model is established by using a system identification method, and the substructure modes are improved using the Frequency Response Method. A substructure synthesis method Is expanded to couple the substructure models and the nonlinear hinge model, and the nonlinear dynamic model of the fin is developed. Finally, the established nonlinear dynamic model of the deployable missile control fin is verified by dynamic tests. The established model is In good agreement with test results, showing that the present approach is useful in aeroelastic stability analyses such as time-domain nonlinear flutter analysis.

PETROV-GALERKIN METHOD FOR NONLINEAR SYSTEM

  • Wang, Yuan-ming;Guo, Ben-yu
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • 제2권1호
    • /
    • pp.61-71
    • /
    • 1998
  • Petrov-Galerkin method is investigated for solving nonlinear systems without monotonicity. A monotone iteration is provided for solving the resulting problem. The numerical results show the advantages of such method.

  • PDF