• Title/Summary/Keyword: nonlinear matrix equations

Search Result 140, Processing Time 0.025 seconds

Large deflection analysis of laminated composite plates using layerwise displacement model

  • Cetkovic, M.;Vuksanovic, Dj.
    • Structural Engineering and Mechanics
    • /
    • v.40 no.2
    • /
    • pp.257-277
    • /
    • 2011
  • In this paper the geometrically nonlinear continuum plate finite element model, hitherto not reported in the literature, is developed using the total Lagrange formulation. With the layerwise displacement field of Reddy, nonlinear Green-Lagrange small strain large displacements relations (in the von Karman sense) and linear elastic orthotropic material properties for each lamina, the 3D elasticity equations are reduced to 2D problem and the nonlinear equilibrium integral form is obtained. By performing the linearization on nonlinear integral form and then the discretization on linearized integral form, tangent stiffness matrix is obtained with less manipulation and in more consistent form, compared to the one obtained using laminated element approach. Symmetric tangent stiffness matrixes, together with internal force vector are then utilized in Newton Raphson's method for the numerical solution of nonlinear incremental finite element equilibrium equations. Despite of its complex layer dependent numerical nature, the present model has no shear locking problems, compared to ESL (Equivalent Single Layer) models, or aspect ratio problems, as the 3D finite element may have when analyzing thin plate behavior. The originally coded MATLAB computer program for the finite element solution is used to verify the accuracy of the numerical model, by calculating nonlinear response of plates with different mechanical properties, which are isotropic, orthotropic and anisotropic (cross ply and angle ply), different plate thickness, different boundary conditions and different load direction (unloading/loading). The obtained results are compared with available results from the literature and the linear solutions from the author's previous papers.

A Novel Stabilizing Control for Neural Nonlinear Systems with Time Delays by State and Dynamic Output Feedback

  • Liu, Mei-Qin;Wang, Hui-Fang
    • International Journal of Control, Automation, and Systems
    • /
    • v.6 no.1
    • /
    • pp.24-34
    • /
    • 2008
  • A novel neural network model, termed the standard neural network model (SNNM), similar to the nominal model in linear robust control theory, is suggested to facilitate the synthesis of controllers for delayed (or non-delayed) nonlinear systems composed of neural networks. The model is composed of a linear dynamic system and a bounded static delayed (or non-delayed) nonlinear operator. Based on the global asymptotic stability analysis of SNNMs, Static state-feedback controller and dynamic output feedback controller are designed for the SNNMs to stabilize the closed-loop systems, respectively. The control design equations are shown to be a set of linear matrix inequalities (LMIs) which can be easily solved by various convex optimization algorithms to determine the control signals. Most neural-network-based nonlinear systems with time delays or without time delays can be transformed into the SNNMs for controller synthesis in a unified way. Two application examples are given where the SNNMs are employed to synthesize the feedback stabilizing controllers for an SISO nonlinear system modeled by the neural network, and for a chaotic neural network, respectively. Through these examples, it is demonstrated that the SNNM not only makes controller synthesis of neural-network-based systems much easier, but also provides a new approach to the synthesis of the controllers for the other type of nonlinear systems.

Partitioning method using kinematic uncoupling in train dynamics (열차 동역학에서 기구학적 비연성을 이용한 분할 해석 방법)

  • 박정훈;유흥희;황요하;김창호
    • Proceedings of the KSR Conference
    • /
    • 1998.11a
    • /
    • pp.437-444
    • /
    • 1998
  • In this paper, an efficient and accurate formulation for the transient analysis of constrained multibody systems is presented. The formulation employs Kane's method along with the null space method. Kane's method reduces the dimension of equations of motion by using partial velocity matrix: it can improve the efficiency of the formulation. Furthermore, the formulation partitions the coefficient matrix of linear and nonlinear equations into several sub-matrices using kinematic uncoupling. This can solve the equations more efficiently. The proposed formulation can be used to perform dynamic analysis of systems which can he partitioned into several sub-systems such as train systems. One numerical example is given to demonstrate the efficiency and accuracy of the formulation, and another numerical example is given to show its application to the train systems.

  • PDF

POWER SYSTEM TRANSIENT STABILITY ANALYSIS USING TRANSITION MATRIX AND VOLTAGE DERIVATIVES (천이행렬과 전압 미분을 이용한 전력계통의 과도 안정도 해석)

  • Park, Young-Moon;Kim, Gwang-Won
    • Proceedings of the KIEE Conference
    • /
    • 1990.07a
    • /
    • pp.135-138
    • /
    • 1990
  • For transient stability analysis of a power system, the new method using transition matrix is introduced in this paper. At the present the, Runge-Kutta, Modified-Euler and Trapezoidal methods have been very popular in most stability programs, Modified-Euler and Trapezoidal methods are inferior in accuracy and Runge-Kutta method has problems in computation time. The proposed algorithm requires transition matrix and its integrated values with derivatives of nonlinear parts in nonlinear differential equations for stability analysis. The method presented in this paper is between Modified-Euler and Runge-Kutta methods from the view point of computation time and is superior to the other methods in accuracy.

  • PDF

Nonlinear free vibration analysis of a composite beam reinforced by carbon nanotubes

  • M., Alimoradzadeh;S.D., Akbas
    • Steel and Composite Structures
    • /
    • v.46 no.3
    • /
    • pp.335-344
    • /
    • 2023
  • This investigation presents nonlinear free vibration of a carbon nanotube reinforced composite beam based on the Von Kármán nonlinearity and the Euler-Bernoulli beam theory The material properties of the structure is considered as made of a polymeric matrix by reinforced carbon nanotubes according to different material distributions. The governing equations of the nonlinear vibration problem is delivered by using Hamilton's principle and the Galerkin's decomposition technique is utilized to discretize the governing nonlinear partial differential equation to nonlinear ordinary differential equation and then is solved by using of multiple time scale method. The nonlinear natural frequency and the nonlinear free response of the system is obtained with the effect of different patterns of reinforcement.

Thermal effects on nonlinear dynamic characteristics of polymer-CNT-fiber multiscale nanocomposite structures

  • Ebrahimi, Farzad;Habibi, Sajjad
    • Structural Engineering and Mechanics
    • /
    • v.67 no.4
    • /
    • pp.403-415
    • /
    • 2018
  • In the present study, nonlinear dynamic response of polymer-CNT-fiber multiscale nanocomposite plate resting on elastic foundations in thermal environments using the finite element method is performed. In this regard, the governing equations are derived based on Inverse Hyperbolic Shear Deformation Theory and von $K{\acute{a}}rm{\acute{a}}n$ geometrical nonlinearity. Three type of distribution of temperature through the thickness of the plate namely, uniform linear and nonlinear are considered. The considered element is C1-continuous with 15 DOF at each node. The effective material properties of the multiscale composite are calculated using Halpin-Tsai equations and fiber micromechanics in hierarchy. The carbon nanotubes are assumed to be uniformly distributed and randomly oriented through the epoxy resin matrix. Five types of impulsive loads are considered, namely the step, sudden, triangular, half-sine and exponential pulses. After examining the validity of the present work, the effects of the weight percentage of SWCNTs and MWCNTs, nanotube aspect ratio, volume fraction of fibers, plate aspect, temperature, elastic foundation parameters, distribution of temperature and shape of impulsive load on nonlinear dynamic response of CNT reinforced multi-phase laminated composite plate are studied in details.

A Study on the Analysis and Design of Nonlinear Control Systems using Personal Computer (개인용 컴퓨터를 이용한 비선형 제어 시스템의 해석 및 설계에 관한 연구)

  • Nam, Moon-Hyun;Jeong, Cheol
    • Proceedings of the KIEE Conference
    • /
    • 1987.11a
    • /
    • pp.82-85
    • /
    • 1987
  • The objective of this paper is to develop computer programs to aid in the design and analysis of control systems in which nonlinear characteristics exist. Control systems are dynamic systems, which can be described using various mathematical models. A convenient model for digital computer simulation is the state model in which described using a set of linear and non linear first order differential equations. The digital simulation was performed on a IBM PC/XT personal computer, and the computer language was BASIC. There are four possible configurations from which a user may choose. When running a program, the user is asked to enter the system parameters according to a specified control system configurations are; 1. A control system with a nonlinear element followed by a plant in a feedback configurations(NLSVF1). 2. A control system with a nonlinear device situated between two plants in a feedback configurations(NLSVF2). 3. A control system with a nonlinear element followed by a plant, followed by a the dealy in feedback configurations(TLAG). 4. A motor and load with a backlash nonlinearity between dynamic portions of the motor/load configurations (BACKLASH). The matrix from state equations are integrated using combination the trapezoidal method and fixed point iteration. Several cases which have nonlinearity were implemented on the computer and the results were discussed.

  • PDF

LINEARIZED MODELLING TECHNIQUES

  • Chang, Young-Woo;Lee, Kyong-Ho
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.8 no.1
    • /
    • pp.1-10
    • /
    • 1995
  • For analyzing systems of multi-variate nonlinear equations, the linearized modelling techniques are elaborated. The technique applies Newton-Raphson iteration, partial differentiation and matrix operation providing solvable solutions to complicated problems. Practical application examples are given in; determining the zero point of functions, determining maximum (or minimum) point of functions, nonlinear regression analysis, and solving complex co-efficient polynomials. Merits and demerits of linearized modelling techniques are also discussed.

  • PDF

Spatial Speaker Localization for a Humanoid Robot Using TDOA-based Feature Matrix (도착시간지연 특성행렬을 이용한 휴머노이드 로봇의 공간 화자 위치측정)

  • Kim, Jin-Sung;Kim, Ui-Hyun;Kim, Do-Ik;You, Bum-Jae
    • The Journal of Korea Robotics Society
    • /
    • v.3 no.3
    • /
    • pp.237-244
    • /
    • 2008
  • Nowadays, research on human-robot interaction has been getting increasing attention. In the research field of human-robot interaction, speech signal processing in particular is the source of much interest. In this paper, we report a speaker localization system with six microphones for a humanoid robot called MAHRU from KIST and propose a time delay of arrival (TDOA)-based feature matrix with its algorithm based on the minimum sum of absolute errors (MSAE) for sound source localization. The TDOA-based feature matrix is defined as a simple database matrix calculated from pairs of microphones installed on a humanoid robot. The proposed method, using the TDOA-based feature matrix and its algorithm based on MSAE, effortlessly localizes a sound source without any requirement for calculating approximate nonlinear equations. To verify the solid performance of our speaker localization system for a humanoid robot, we present various experimental results for the speech sources at all directions within 5 m distance and the height divided into three parts.

  • PDF

A Study on the Nonlinear Analysis of Dynamic Response of Shell Structure (Shell 구조물의 비선형 동적응답 해석에 관한 연구)

  • Bae, Dong-Myung;Jin, Jong-Dae
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.28 no.1
    • /
    • pp.79-92
    • /
    • 1992
  • This is analyzed using the finite element method which is appling excellent isoparametric curve element in the aspect of large usages of dynamic responses in which is regarding geometric and material nonlinear of a large scale shell structure of an airplane, a submarine, a ship, and an ocean structure. The solution of dynamic equations is got by direct integration method using time-stepping procedure and regarding Central Difference Method of the both solutions. But because formal matrix factorization is not necessary in each time step and it does not take less time to compute relatively, this method must be regarded very few time steps on the condition. Axisymmatric shell problems are inspected using 8 node Isoparametric element in this paper. Partial axisymmatric spherical shell is used as a model to analyze axisymmatric nonlinear dynamic behavior regarding. Total Lagrangian formulation in geometric nonlinear behavior and elastio-viscoplastic in material nonlinear behavior.

  • PDF