• 제목/요약/키워드: nonlinear large-scale systems

검색결과 67건 처리시간 0.022초

미지 환경 탐색 및 감시를 위한 다개체 로봇의 경로계획 (Multi-Robot Path Planning for Environmental Exploration/Monitoring)

  • 이수용
    • 제어로봇시스템학회논문지
    • /
    • 제18권5호
    • /
    • pp.413-418
    • /
    • 2012
  • This paper presents a multi-robot path planner for environment exploration and monitoring. Robotics systems are being widely used as data measurement tools, especially in dangerous environment. For large scale environment monitoring, multiple robots are required in order to save time. The path planner should not only consider the collision avoidance but efficient coordination of robots for optimal measurements. Nonlinear spring force based planning algorithm is integrated with the spatial gradient following path planner. Perturbation/Correlation based estimation of spatial gradient is applied. An algorithm of tuning the stiffness for robot coordination is presented. The performance of the proposed algorithm is discussed with simulation results.

개선된 스케일 스페이스 필터링과 함수연결연상 신경망을 이용한 화학공정 감시 (Monitoring of Chemical Processes Using Modified Scale Space Filtering and Functional-Link-Associative Neural Network)

  • 최중환;김윤식;장태석;윤인섭
    • 제어로봇시스템학회논문지
    • /
    • 제6권12호
    • /
    • pp.1113-1119
    • /
    • 2000
  • To operate a process plant safely and economically, process monitoring is very important. Process monitoring is the task to identify the state of the system from sensor data. Process monitoring includes data acquisition, regulatory control, data reconciliation, fault detection, etc. This research focuses on the data recon-ciliation using scale-space filtering and fault detection using functional-link associative neural networks. Scale-space filtering is a multi-resolution signal analysis method. Scale-space filtering can extract highest frequency factors(noise) effectively. But scale-space filtering has too large calculation costs and end effect problems. This research reduces the calculation cost of scale-space filtering by applying the minimum limit to the gaussian kernel. And the end-effect that occurs at the end of the signal of the scale-space filtering is overcome by using extrapolation related with the clustering change detection method. Nonlinear principal component analysis methods using neural network have been reviewed and the separately expanded functional-link associative neural network is proposed for chemical process monitoring. The separately expanded functional-link associative neural network has better learning capabilities, generalization abilities and short learning time than the exiting-neural networks. Separately expanded functional-link associative neural network can express a statistical model similar to real process by expanding the input data separately. Combining the proposed methods-modified scale-space filtering and fault detection method using the separately expanded functional-link associative neural network-a process monitoring system is proposed in this research. the usefulness of the proposed method is proven by its application a boiler water supply unit.

  • PDF

무베어링 헬리콥터 로터 시스템의 동특성 해석 (Dynamic Characteristic Analyses of a Bearingless Helicopter Rotor Systems)

  • 기영중;윤철용;김승호
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2011년도 추계학술대회 논문집
    • /
    • pp.52-56
    • /
    • 2011
  • Recently, KARI(Korea Aerospace Research Institute) has been developing a modern 11.5m diameter four bladed bearingless main rotor system, and this rotor system can be used for 7,000lb class helicopter. Flexbeam and torque tube can be considered as the key structural components, and large elastic twist of flexbeam induced by pitch control motion of torque tube can influence the nonlinear aeroelastic behavior. In this paper, the dynamic characteristic analysis results of bearingless rotor system were presented. In order to construct a input model and validate the analysis procedures, calculated results using the comprehensive helicopter analysis program CAMRAD II were compared with the measured natural frequencies and lag damping data from small-scale wind tunnel test. Next, the analysis model was extended to a full-scale model, and the dynamic analysis results were presented.

  • PDF

Evaluation of freezing and thawing damage of concrete using a nonlinear ultrasonic method

  • Yim, Hong Jae;Park, Sun-Jong;Kim, Jae Hong;Kwak, Hyo-Gyong
    • Smart Structures and Systems
    • /
    • 제17권1호
    • /
    • pp.45-58
    • /
    • 2016
  • Freezing and thawing cycles induce deterioration and strength degradation of concrete structures. This study presumes that a large quantity of contact-type defects develop due to the freezing and thawing cycles of concrete and evaluates the degree of defects based on a nonlinearity parameter. The nonlinearity parameter was obtained by an impact-modulation technique, one of the nonlinear ultrasonic methods. It is then used as an indicator of the degree of contact-type defects. Five types of damaged samples were fabricated according to different freezing and thawing cycles, and the occurrence of opening or cracks on a micro-scale was visually verified via scanning electron microscopy. Dynamic modulus and wave velocity were also measured for a sensitivity comparison with the obtained nonlinearity parameter. The possibility of evaluating strength degradation was also investigated based on a simple correlation of the experimental results.

A Multi-Level Simulation Technique for Large-ScaleAnalog Integrated Circuits

  • Yang Jeemo
    • 한국산업정보학회:학술대회논문집
    • /
    • 한국산업정보학회 1998년도 공동추계학술대회 경제위기 극복을 위한 정보기술의 효율적 활용
    • /
    • pp.827-834
    • /
    • 1998
  • This paper describes a multi-level simulation technique and its implementation, which accurately solve voltages and currents of circuits descreibed at mixed levels of abstractions. A metho to form a tightly coupled simulation environment is proposed and, starting from a description of a circuit, simulation set-up and analysis procedure of the multi-level simulator for a transient response are presented. Circuit and behavioral simulation techniques and their implementations composing the multi-level simulation are explained in detail. Most of the algorithms implemented in the simulation are based upon the standard simulation techniques in order to obtain the reliability and accuracy of conventinoal simulators. Simulation examples show that the multi-level simulator can analyze circuits containing highly nonlinear behavioral models without loss of accuracy provided the behavioral models are accurate enough.

막과 텐세그러티를 이용한 하이브리드 구조물의 단위 구조 제안 (A Study on the Unit System of Hybrid System Using the Membrane and Tensegrity)

  • 서삼열;고광웅
    • 한국공간구조학회논문집
    • /
    • 제5권2호
    • /
    • pp.81-87
    • /
    • 2005
  • The Space structures may have large freedom in scale and form. And especially Hybrid structures are received much attention from the view points of their light weight and aesthetics. Hybrid systems are stable structures which are reticulated spatial structures composed of compressive straight members, struts and cables and Membranes. In this paper, The Hybrid Unit System are suggested using the Membrane and Cable elements based on the Tensegrity Unit system. Also, The Hybrid System of double-layered single curvature is presented. We analyze the force density method allowing form-finding for Tensegrity systems. And We analyze the shape analysis by the LARSH which is the program for nonlinear analysis.

  • PDF

유전알고리즘을 이용하여 무효전력원의 이산성을 고려한 무효전력 최적배분 (Optimal Dispatch of Reactive Power considering discrete VAR using Genetic Algorithms)

  • 유석구;김규호
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1995년도 하계학술대회 논문집 B
    • /
    • pp.571-573
    • /
    • 1995
  • This paper presents a method for optimal dispatch which minimizes transmission losses and improves voltage profile of power systems using genetic algorithm based on the mechanism of natural genetics and natural selection. The constraints are VAR sources(transformer tap, generator voltage magnitude and shunt capacitor/reactor), load bus voltages and generator reactive power. Real variable-based genetic algorithms which can save coding times and maintain the accuracy are applied for optimal dispatch of reactive power. The genes of genetic algorithm consisted of integers for considering discrete VAR sources. A efficient operator for crossover is proposed to consider the effect of close genes. The algorithm proposed can apply to problems for large scale power systems with multi-variables and complex nonlinear functions efficiently. The proposed method is applied to IEEE 30 buses model system to show its effectiveness.

  • PDF

Study on derivation from large-amplitude size dependent internal resonances of homogeneous and FG rod-types

  • Somaye Jamali Shakhlavi;Reza Nazemnezhad
    • Advances in nano research
    • /
    • 제16권2호
    • /
    • pp.111-125
    • /
    • 2024
  • Recently, a lot of research has been done on the analysis of axial vibrations of homogeneous and FG nanotubes (nanorods) with various aspects of vibrations that have been fully mentioned in history. However, there is a lack of investigation of the dynamic internal resonances of FG nanotubes (nanorods) between them. This is one of the essential or substantial characteristics of nonlinear vibration systems that have many applications in various fields of engineering (making actuators, sensors, etc.) and medicine (improving the course of diseases such as cancers, etc.). For this reason, in this study, for the first time, the dynamic internal resonances of FG nanorods in the simultaneous presence of large-amplitude size dependent behaviour, inertial and shear effects are investigated for general state in detail. Such theoretical patterns permit as to carry out various numerical experiments, which is the key point in the expansion of advanced nano-devices in different sciences. This research presents an AFG novel nano resonator model based on the axial vibration of the elastic nanorod system in terms of derivation from large-amplitude size dependent internal modals interactions. The Hamilton's Principle is applied to achieve the basic equations in movement and boundary conditions, and a harmonic deferential quadrature method, and a multiple scale solution technique are employed to determine a semi-analytical solution. The interest of the current solution is seen in its specific procedure that useful for deriving general relationships of internal resonances of FG nanorods. The numerical results predicted by the presented formulation are compared with results already published in the literature to indicate the precision and efficiency of the used theory and method. The influences of gradient index, aspect ratio of FG nanorod, mode number, nonlinear effects, and nonlocal effects variations on the mechanical behavior of FG nanorods are examined and discussed in detail. Also, the inertial and shear traces on the formations of internal resonances of FG nanorods are studied, simultaneously. The obtained valid results of this research can be useful and practical as input data of experimental works and construction of devices related to axial vibrations of FG nanorods.

헬리콥터 시스템의 퍼지 분산 제어기 설계 (A Decentralized Control Technique for Experimental Nonlinear Helicopter Systems)

  • 김문환;박진배;이호재;차대범;주영훈
    • 한국지능시스템학회논문지
    • /
    • 제12권1호
    • /
    • pp.80-84
    • /
    • 2002
  • 본 논문은 2자유도 실험용 헬리콥터 시스템의 제어를 위한 분산 제어기 설계 기법을 제안한다. 분산제어기법은 특히 대규모 제어 시스템에 적합하다고 알려져 있다. 본 논문에서는 Lyapunov 안정도 설계 방법을 이용하여 상호 연결된 TS 퍼지 시스템의 안정도 조건을 유도하고 선형 행렬 부등식을 이용하여 제어기 설계 조건을 공식화한다. 제안된 방법의 유용성을 검증하기 위해, 컴퓨터 시뮬레이션뿐 만 아니라 실험을 통해 그 결과를 도출한다.

Controller Optimization for Bidirectional Power Flow in Medium-Voltage DC Power Systems

  • Chung, Il-Yop;Liu, Wenxin;Cartes, David A.;Cho, Soo-Hwan;Kang, Hyun-Koo
    • Journal of Electrical Engineering and Technology
    • /
    • 제6권6호
    • /
    • pp.750-759
    • /
    • 2011
  • This paper focuses on the control of bidirectional power flow in the electric shipboard power systems, especially in the Medium-Voltage Direct Current (MVDC) shipboard power system. Bidirectional power control between the main MVDC bus and the local zones can improve the energy efficiency and control flexibility of electric ship systems. However, since the MVDC system contains various nonlinear loads such as pulsed power load and radar in various subsystems, the voltage of the MVDC and the local zones varies significantly. This voltage variation affects the control performance of the bidirectional DC-DC converters as exogenous disturbances. To improve the control performance regardless of uncertainties and disturbances, this paper proposes a novel controller design method of the bidirectional DC-DC converters using $L_1$ control theory and intelligent optimization algorithm. The performance of the proposed method is verified via large-scale real-time digital simulation of a notional shipboard MVDC power system.