• Title/Summary/Keyword: nonlinear iteration method

Search Result 225, Processing Time 0.024 seconds

Nonlinear dynamic performance of long-span cable-stayed bridge under traffic and wind

  • Han, Wanshui;Ma, Lin;Cai, C.S.;Chen, Suren;Wu, Jun
    • Wind and Structures
    • /
    • v.20 no.2
    • /
    • pp.249-274
    • /
    • 2015
  • Long-span cable-stayed bridges exhibit some features which are more critical than typical long span bridges such as geometric and aerodynamic nonlinearities, higher probability of the presence of multiple vehicles on the bridge, and more significant influence of wind loads acting on the ultra high pylon and super long cables. A three-dimensional nonlinear fully-coupled analytical model is developed in this study to improve the dynamic performance prediction of long cable-stayed bridges under combined traffic and wind loads. The modified spectral representation method is introduced to simulate the fluctuating wind field of all the components of the whole bridge simultaneously with high accuracy and efficiency. Then, the aerostatic and aerodynamic wind forces acting on the whole bridge including the bridge deck, pylon, cables and even piers are all derived. The cellular automation method is applied to simulate the stochastic traffic flow which can reflect the real traffic properties on the long span bridge such as lane changing, acceleration, or deceleration. The dynamic interaction between vehicles and the bridge depends on both the geometrical and mechanical relationships between the wheels of vehicles and the contact points on the bridge deck. Nonlinear properties such as geometric nonlinearity and aerodynamic nonlinearity are fully considered. The equations of motion of the coupled wind-traffic-bridge system are derived and solved with a nonlinear separate iteration method which can considerably improve the calculation efficiency. A long cable-stayed bridge, Sutong Bridge across the Yangze River in China, is selected as a numerical example to demonstrate the dynamic interaction of the coupled system. The influences of the whole bridge wind field as well as the geometric and aerodynamic nonlinearities on the responses of the wind-traffic-bridge system are discussed.

New Nonlinear Analysis Algorithm Using Equivalent Load for Stiffness (강성등가하중을 이용한 새로운 비선형해석 알고리즘)

  • Kim, Yeong-Min;Kim, Chee-Kyeong;Kim, Tae-Jin
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.20 no.6
    • /
    • pp.731-742
    • /
    • 2007
  • This paper presents a new nonlinear analysis algorithm, that is, adaptive Newton-Raphson iteration method, The presented algorithm is based on the existing Newton-Raphson method, and the concept of it can be summarized as calculating the equivalent load for stiffness(ELS) and adapting this to the initial global stiffness matrix which has already been calculated and saved in initial analysis and finally calculating the correction displacements for the nonlinear analysis, The key characteristics of the proposed algorithm is that it calculates the inverse matrix of the global stiffness matrix only once irresponsive of the number of load steps. The efficiency of the proposed algorithm depends on the ratio of the active Dofs - the Dofs which are directly connected to the members of which the element stiffness are changed - to the total Dofs, and based on this ratio by using the proposed algorithm as a complementary method to the existing algorithm the efficiency of the nonlinear analysis can be improved dramatically.

A study on the Analysis of Dynamic Characteristic for Nonlinear Rotor-Housing Systems (비선형 로터-하우싱 시스템의 동특성 해석 연구)

  • Kim, G.G.;Lim, J.H.;Chung, I.S.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.12 no.2
    • /
    • pp.69-78
    • /
    • 1995
  • Nonlinear analysis methods are developed which will enable the reliable prediction of the dynamic behavior of the space shuttle main engine(SSME) turbopumps in the presence of bearing clearances and other local nonlinearities. A computationally efficient convolution method, based on discretized Duhamel and transition matrix integral formulations, is developed for the transient analysis. In the formulation, the coupling forces due to the onlinearities are treated as external forces acting on the coupled subsystems. Iteration is utilized to determine their magnitudes at each time increament. The method is applied to a nonlinear generic model of the high pressure oxygen turthods, the convolution approach proved to be more accurate and highly more efficient. For determining the nonlinear, steady-state periodic responses, an incremental harmonic balance(IHB) method was also developed. The method was successfully used to determine dominantly harmonic and subharmonic(subsynchronous) responses of the HPOTP generic model with bearing clearances. A reduction method similar to the impedance formulation utilized with linear systems is used to reduce the housing-totor models to their coordinates at the bearing clearances.

  • PDF

Mathematical solution for nonlinear vibration equations using variational approach

  • Bayat, M.;Pakar, I.
    • Smart Structures and Systems
    • /
    • v.15 no.5
    • /
    • pp.1311-1327
    • /
    • 2015
  • In this paper, we have applied a new class of approximate analytical methods called Variational Approach (VA) for high nonlinear vibration equations. Three examples have been introduced and discussed. The effects of important parameters on the response of the problems have been considered. Runge-Kutta's algorithm has been used to prepare numerical solutions. The results of variational approach are compared with energy balance method and numerical and exact solutions. It has been established that the method is an easy mathematical tool for solving conservative nonlinear problems. The method doesn't need small perturbation and with only one iteration achieve us to a high accurate solution.

Analysis of a Nonlinear Integrated-Mirror Etalon by the Characteristic Matrix Method (특성행렬을 이용한 비선형 집적거울 Etalon의 해석)

  • 김덕봉
    • Korean Journal of Optics and Photonics
    • /
    • v.4 no.3
    • /
    • pp.317-322
    • /
    • 1993
  • In this paper we propose a method to analyze the nonlinear behavior of an integrated-mirror etalon by the characteristic matrix method. If the dependence of the refractive index and the absorption coefficient upon the light intensity are known, we can couple this with an equation by which we can evaluate the light intensity distribution inside an etalon for the given values of the refractive index and the absorption coefficient. By solving these coupled equations by the iteration method, we evaluate the transmission characteristics of a nonlinear integrated-mirror etalon. By the characteristic matrix method, we have demonstrated the static and dynamic bistable behavior of a nonlinear integrated-mirror etalon.

  • PDF

Accurate analytical solutions for nonlinear oscillators with discontinuous

  • Bayat, Mahdi;Bayat, Mahmoud;Pakar, Iman
    • Structural Engineering and Mechanics
    • /
    • v.51 no.2
    • /
    • pp.349-360
    • /
    • 2014
  • In this study, three approximate analytical methods have been proposed to prepare an accurate analytical solution for nonlinear oscillators with fractional potential. The basic idea of the approaches and their applications to nonlinear discontinuous equations have been completely presented and discussed. Some patterns are also presented to show the accuracy of the methods. Comparisons between Energy Balance Method (EBM), Variational Iteration Method (VIM) and Hamiltonian Approach (HA) shows that the proposed approaches are very close together and could be easily extend to conservative nonlinear vibrations.

A Shape Finding of the Cable Structures by Flexibility Iteration Procedure and Nonlinear FEM (유연성 반복과정과 비선형유한요소법에 의한 케이블 구조물의 형태탐색)

  • 황보석;서삼열;진권태
    • Computational Structural Engineering
    • /
    • v.3 no.3
    • /
    • pp.133-140
    • /
    • 1990
  • Analysis of cable structures is complex because their force - displacement relationships are highly nonlinear and also because large deformations introduce geometric nonlinearity. Therefore, we must take account their geometric nonlinearity in the analysis and find the equilibrated shape of cable structures. In this paper, to slove these problems, numerical procedures involving geometrical nonlinearity are introduced. They are applicable to general cable net, flexible transmission lines and suspended cable roof. These procedures are divided into two parts; one is to obtain the equilibrated shapes and stresses of the cable structures with uniform load by flexibility iteration method, the other is to analyse the equilibrated structures subjected to nodal external forces by nonlinear finite element method.

  • PDF

Research on Numerical Calculation of Normal Modes in Nonlinear Vibrating Systems (비선형 진동계 정규모드의 수치적 계산 연구)

  • Lee, Kyoung-Hyun;Han, Hyung-Suk;Park, Sungho;Jeon, Soohong
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.26 no.7
    • /
    • pp.795-805
    • /
    • 2016
  • Nonlinear normal modes(NNMs) is a branch of periodic solution of nonlinear dynamic systems. Determination of stable periodic solution is very important in many engineering applications since the stable periodic solution can be an attractor of such nonlinear systems. Periodic solutions of nonlinear system are usually calculated by perturbation methods and numerical methods. In this study, numerical method is used in order to calculate the NNMs. Iteration of the solution is presented by multiple shooting method and continuation of solution is presented by pseudo-arclength continuation method. The stability of the NNMs is analyzed using Floquet multipliers, and bifurcation points are calculated using indirect method. Proposed analyses are applied to two nonlinear numerical models. In the first numerical model nonlinear spring-mass system is analyzed. In the second numerical model Jeffcott rotor system which has unstable equilibria is analyzed. Numerical simulation results show that the multiple shooting method can be applied to self excited system as well as the typical nonlinear system with stable equilibria.

Influence of lateral motion of cable stays on cable-stayed bridges

  • Wang, P.H.;Liu, M.Y.;Huang, Y.T.;Lin, L.C.
    • Structural Engineering and Mechanics
    • /
    • v.34 no.6
    • /
    • pp.719-738
    • /
    • 2010
  • The aim of this paper concerns with the nonlinear analysis of cable-stayed bridges including the vibration effect of cable stays. Two models for the cable stay system are built up in the study. One is the OECS (one element cable system) model in which one single element per cable stay is used and the other is MECS (multi-elements cable system) model, where multi-elements per cable stay are used. A finite element computation procedure has been set up for the nonlinear analysis of such kind of structures. For shape finding of the cable-stayed bridge with MECS model, an efficient computation procedure is presented by using the two-loop iteration method (equilibrium iteration and shape iteration) with help of the catenary function method to discretize each single cable stay. After the convergent initial shape of the bridge is found, further analysis can then be performed. The structural behaviors of cable-stayed bridges influenced by the cable lateral motion will be examined here detailedly, such as the static deflection, the natural frequencies and modes, and the dynamic responses induced by seismic loading. The results show that the MECS model offers the real shape of cable stays in the initial shape, and all the natural frequencies and modes of the bridge including global modes and local modes. The global mode of the bridge consists of coupled girder, tower and cable stays motion and is a coupled mode, while the local mode exhibits only the motion of cable stays and is uncoupled with girder and tower. The OECS model can only offers global mode of tower and girder without any motion of cable stays, because each cable stay is represented by a single straight cable (or truss) element. In the nonlinear seismic analysis, only the MECS model can offer the lateral displacement response of cable stays and the axial force variation in cable stays. The responses of towers and girders of the bridge determined by both OECS- and MECS-models have no great difference.

Hierarchical Optimal Control of Nonlinear System using Haar Function (하알 함수를 이용한 비선형계의 계층별 최적제어)

  • Park, Jung-Ho;Cho, Young-Ho;Shin, Seung-Kwon;Chung, Je-Wook;Shim, Jae-Sun;Ahn, Doo-Soo
    • Proceedings of the KIEE Conference
    • /
    • 1999.11c
    • /
    • pp.485-487
    • /
    • 1999
  • We propose the algorithm with which one can solve the problem of the two-level hierarchical optimal control of nonlinear systems by repeatedly updating the state vectors using the haar function and Picard's iteration methods. Using the simple operation of the coefficient vectors from the fast haar transformation in the upper level and applying that vectors to Picard iteration methods in the independently lower level allow us to obtain the another method except the inversion matrix operation of the high dimention and the kronecker product in the optimal control algorithm.

  • PDF