• Title/Summary/Keyword: nonlinear identification

Search Result 559, Processing Time 0.031 seconds

Identification of Volterra Kernels of Nonlinear Van de Vusse Reactor

  • Kashiwagi, Hiroshi;Rong, Li
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.26.3-26
    • /
    • 2001
  • Van de Vusse reactor is known as a highly nonlinear chemical process and has been considered by a number of researchers as a benchmark problem for nonlinear chemical process. Various identification methods for nonlinear system are also verified by applying these methods to Van de Vusse reactor. From the point of view of identification, only the Volterra kernel of second order has been obtained until now. In this paper, the authors show that Volterra kernels of nonlinear Van de Vusse reactor of up to 3rd order are obtained by use of M-sequence correlation method. A pseudo-random M-sequence is applied to Van de Vusse reactor as an input and its output is measured. Taking the cross correlation function between the input and the output, we obtain up to 3rd order Volterra kernels, which is ...

  • PDF

A Structural Damage Identification Method Based on Spectral Element Model and Frequency Response Function

  • Lee, U-Sik;Min, Seung-Gyu;Kwon, Oh-Yang
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.23 no.6
    • /
    • pp.559-565
    • /
    • 2003
  • A spectral element model-based structural damage identification method (SDIM) was derived in the previous study by using the damage-induced changes in frequency response functions. However the previous SDIM often provides poor damage identification results because the nonlinear effect of damage magnitude was not taken into account. Thus, this paper improves the previous SDIM by taking into account the nonlinear effect of damage magnitude. Accordingly an iterative solution method is used in this study to solve the nonlinear matrix equation for local damages distribution. The present SDIM is evaluated through the numerically simulated damage identification tests.

Identification of Fuzzy Dynamic Model for Fault Diagnosis of Nonlinear System (비선형계통 고장진단을 위한 온-라인 퍼지동적모델 식별)

  • 이종렬;배상욱;이기상;박귀태
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1998.10a
    • /
    • pp.204-210
    • /
    • 1998
  • This paper discusses an on-line fuzzy dynamic model(FDM) identification of nonlinear processes for the design of fuzzy model based fault detection and isolation(FDI). The dynamic behavior of a nonlinear process is represented by a fuzzy aggregation of a set of local linear models. The identification is divided into two procedures. The first is the off-line identification of membership function. The second is the on-line identification of the local linear models. Then, we propose a residual generation scheme based on the parameters of local linear models and show that the scheme can be used for the design of FDI

  • PDF

Linear/nonlinear system identification and adaptive tracking control using neural networks (신경회로망을 이용한 선형/비선형 시스템의 식별과 적응 트래킹 제어)

  • 조규상;임제택
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.33B no.5
    • /
    • pp.1-9
    • /
    • 1996
  • In this paper, a parameter identification method for a discrete-time linear system using multi-layer neural network is proposed. The parameters are identified with the combination of weights and the output of neuraons of a neural network, which can be used for a linear and a nonlinear controller. An adaptive output tracking architecture is designed for the linear controller. And, the nonlinear controller. A sliding mode control law is applied to the stabilizing the nonlinear controller such that output errors can be reduced. The effectiveness of the proposed control scheme is illustrated through simulations.

  • PDF

Nonlinear system identification method using genetic algorithm (유전자 알고리즘을 이용한 새로운 비선형 시스템 식별 방식)

  • 정경권;정성부;감한웅;엄기환
    • Proceedings of the IEEK Conference
    • /
    • 1998.06a
    • /
    • pp.905-908
    • /
    • 1998
  • In this paper, we propose an identification method for nonlinear systems. In order to identify the nonlinear system parameters, we are represented the linearization from the nonlinear system, and use a genetic algorithm(GA). The parameters are coded into binary string and searched by GA. The simulation results show the effectiveness of the proposed approach.

  • PDF

Adaptive identification of volterra kernel of nonlinear systems

  • Yeping, Sun;Kashiwagi, Hiroshi
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1995.10a
    • /
    • pp.476-479
    • /
    • 1995
  • A real time and adaptive method for obtaining Volterra kernels of a nonlinear system by use of pseudorandom M-sequences and correlation technique is proposed. The Volterra kernels are calculated real time and the obtained Volterra kernels becomes more accurate as time goes on. The simulation results show the effectiveness of this method for identifying time-varying nonlinear system.

  • PDF

Nonlinear System Identification using an Adaptive Nonlinear Recursive State-Space Filter and its performance analysis (ANRSS 필터를 이용한 비선형 시스템의 인식 및 성능분석)

  • Kim, Hyun-Sang;Nam, Sang-Won
    • Proceedings of the KIEE Conference
    • /
    • 1995.07b
    • /
    • pp.937-940
    • /
    • 1995
  • The purpose of this paper is to present a nonlinear system identification method, where an adaptive nonlinear recursive state-spare(ANRSS) filter is employed as its filter structure, and a variable step (VS) algorithm is applied as its adaptation law. To demonstrate the validity of the proposed method, some simulation results are included.

  • PDF

Single Step Response Based Method for the Simple Identification of Wiener-type Nonlinear Process (단일 계단 응답에 근거한 Wiener형 비선형 공정의 간편한 모델 확인 방법)

  • Sanghun Lim;Jea Pil Heo;Su Whan Sung;Jietae Lee;Friedrich Y. Lee
    • Korean Chemical Engineering Research
    • /
    • v.61 no.1
    • /
    • pp.89-96
    • /
    • 2023
  • The Wiener-type nonlinear model where a static nonlinear block follows a dynamic linear block is widely used to describe the dynamics of chemical processes. A long process excitation step is typically needed to identify this Wiener-type nonlinear model with two blocks. In order to cope with this disadvantage, an identification method for the Wiener-type nonlinear model that uses only a single-step response is proposed here. The proposed method estimates the response of the dynamic linear sub-block from the initial part of the step response, and then the static nonlinear sub-block is identified. Because the only single-step response is used to identify the Wiener-type nonlinear model, there is great benefit in time and cost for obtaining process response. The performance of the proposed identification method with the single-step response is verified through a representative Wiener-type nonlinear process, a pH titration process, and a liquid level system.

System Identification of ARMAX Model using the Genetic Algorithm (유전자 알고리즘을 이용한 ARMAX 모델의 시스템 식별)

  • 정경권;권성훈;이정훈;엄기환
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 1998.11a
    • /
    • pp.146-150
    • /
    • 1998
  • In this paper, we propose a nonlinear system identification method using the genetic algorithm. We represent the nonlinear system as a parameter vector and a measurement vector of ARMAX model. In order to identify the nonlinear system, we find the parameter vector using the genetic algorithm. The parameter vector is regarded as a chromosome of gene. The error between the desired output and estimated output every sampling period is used to calculate the fitness of one gene. The simulation results showed the effectiveness of using the genetic algorithm in the nonlinear system identification.

  • PDF

Evolutionary Computation Approach to Wiener Model Identification

  • Oh, Kyu-Kwon;Okuyama, Yoshifumi
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.33.1-33
    • /
    • 2001
  • We address a novel approach to identify a nonlinear dynamic system for Wiener models, which are composed of a linear dynamic system part followed by a nonlinear static part. The aim of system identification here is to provide the optimal mathematical model of both the linear dynamic and the nonlinear static parts in some appropriate sense. Assuming the nonlinear static part is invertible, we approximate the inverse function by a piecewise linear function. We estimate the piecewise linear inverse function by using the evolutionary computation approach such as genetic algorithm (GA) and evolution strategies (ES), while we estimate the linear dynamic system part by the least squares method. The results of numerical simulation studies indicate the usefulness of proposed approach to the Wiener model identification.

  • PDF