• 제목/요약/키워드: nonlinear identification

검색결과 560건 처리시간 0.024초

Fuzzy Relation-Based Fuzzy Neural-Networks Using a Hybrid Identification Algorithm

  • Park, Ho-Seung;Oh, Sung-Kwun
    • International Journal of Control, Automation, and Systems
    • /
    • 제1권3호
    • /
    • pp.289-300
    • /
    • 2003
  • In this paper, we introduce an identification method in Fuzzy Relation-based Fuzzy Neural Networks (FRFNN) through a hybrid identification algorithm. The proposed FRFNN modeling implement system structure and parameter identification in the efficient form of "If...., then... " statements, and exploit the theory of system optimization and fuzzy rules. The FRFNN modeling and identification environment realizes parameter identification through a synergistic usage of genetic optimization and complex search method. The hybrid identification algorithm is carried out by combining both genetic optimization and the improved complex method in order to guarantee both global optimization and local convergence. An aggregate objective function with a weighting factor is introduced to achieve a sound balance between approximation and generalization of the model. The proposed model is experimented with using two nonlinear data. The obtained experimental results reveal that the proposed networks exhibit high accuracy and generalization capabilities in comparison to other models.er models.

Identification of plastic deformations and parameters of nonlinear single-bay frames

  • Au, Francis T.K.;Yan, Z.H.
    • Smart Structures and Systems
    • /
    • 제22권3호
    • /
    • pp.315-326
    • /
    • 2018
  • This paper presents a novel time-domain method for the identification of plastic rotations and stiffness parameters of single-bay frames with nonlinear plastic hinges. Each plastic hinge is modelled as a pseudo-semi-rigid connection with nonlinear hysteretic moment-curvature characteristics at an element end. Through the comparison of the identified end rotations of members that are connected together, the plastic rotation that furnishes information of the locations and plasticity degrees of plastic hinges can be identified. The force consideration of the frame members may be used to relate the stiffness parameters to the elastic rotations and the excitation. The damped-least-squares method and damped-and-weighted-least-squares method are adopted to estimate the stiffness parameters of frames. A noise-removal strategy employing a de-noising technique based on wavelet packets with a smoothing process is used to filter out the noise for the parameter estimation. The numerical examples show that the proposed method can identify the plastic rotations and the stiffness parameters using measurements with reasonable level of noise. The unknown excitation can also be estimated with acceptable accuracy. The advantages and disadvantages of both parameter estimation methods are discussed.

유전자 알고리즘 기반 퍼지 다항식 뉴럴네트워크를 이용한 비선형 공정데이터의 최적 동정 (Optimal Identification of Nonlinear Process Data Using GAs-based Fuzzy Polynomial Neural Networks)

  • 이인태;김완수;김현기;오성권
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2005년도 심포지엄 논문집 정보 및 제어부문
    • /
    • pp.6-8
    • /
    • 2005
  • In this paper, we discuss model identification of nonlinear data using GAs-based Fuzzy Polynomial Neural Networks(GAs-FPNN). Fuzzy Polynomial Neural Networks(FPNN) is proposed model based Group Method Data Handling(GMDH) and Neural Networks(NNs). Each node of FPNN is expressed Fuzzy Polynomial Neuron(FPN). Network structure of nonlinear data is created using Genetic Algorithms(GAs) of optimal search method. Accordingly, GAs-FPNN have more inflexible than the existing models (in)from structure selecting. The proposed model select and identify its for optimal search of Genetic Algorithms that are no. of input variables, input variable numbers and consequence structures. The GAs-FPNN model is select tuning to input variable number, number of input variable and the last part structure through optimal search of Genetic Algorithms. It is shown that nonlinear data model design using Genetic Algorithms based FPNN is more usefulness and effectiveness than the existing models.

  • PDF

Analysis of seismic behavior of composite frame structures

  • Zhao, Huiling
    • Steel and Composite Structures
    • /
    • 제20권3호
    • /
    • pp.719-729
    • /
    • 2016
  • There are great needs of simple but reliable mechanical nonlinear behavior analysis and performance evaluation method for frames constructed by steel and concrete composite beams or columns when the structures subjected extreme loads, such as earthquake loads. This paper describes an approach of simplified macro-modelling for composite frames consisting of steel-concrete composite beams and CFST columns, and presents the performance evaluation procedure based on the pushover nonlinear analysis results. A four-story two-bay composite frame underground is selected as a study case. The establishment of the macro-model of the composite frame is guided by the characterization of nonlinear behaviors of composite structural members. Pushover analysis is conducted to obtain the lateral force versus top displacement curve of the overall structure. The identification method of damage degree of composite frames has been proposed. The damage evolution and development of this composite frame in case study has been analyzed. The failure mode of this composite frame is estimated as that the bottom CFST columns damage substantially resulting in the failure of the bottom story. Finally, the seismic performance of the composite frame with high strength steel is analyzed and compared with the frame with ordinary strength steel, and the result shows that the employment of high strength steel in the steel tube of CFST columns and steel beam of composite beams benefits the lateral resistance and elasticity resuming performance of composite frames.

적응퍼지-뉴럴네트워크를 이용한 비선형 공정의 온-라인 모델링 (on-line Modeling of Nonlinear Process Systems using the Adaptive Fuzzy-neural Networks)

  • 오성권;박병준;박춘성
    • 대한전기학회논문지:전력기술부문A
    • /
    • 제48권10호
    • /
    • pp.1293-1302
    • /
    • 1999
  • In this paper, an on-line process scheme is presented for implementation of a intelligent on-line modeling of nonlinear complex system. The proposed on-line process scheme is composed of FNN-based model algorithm and PLC-based simulator, Here, an adaptive fuzzy-neural networks and HCM(Hard C-Means) clustering method are used as an intelligent identification algorithm for on-line modeling. The adaptive fuzzy-neural networks consists of two distinct modifiable sturctures such as the premise and the consequence part. The parameters of two structures are adapted by a combined hybrid learning algorithm of gradient decent method and least square method. Also we design an interface S/W between PLC(Proguammable Logic Controller) and main PC computer, and construct a monitoring and control simulator for real process system. Accordingly the on-line identification algorithm and interface S/W are used to obtain the on-line FNN model structure and to accomplish the on-line modeling. And using some I/O data gathered partly in the field(plant), computer simulation is carried out to evaluate the performance of FNN model structure generated by the on-line identification algorithm. This simulation results show that the proposed technique can produce the optimal fuzzy model with higher accuracy and feasibility than other works achieved previously.

  • PDF

자동차용 댐퍼의 비선형 동특성 (Nonlinear Dynamic Characteristics of an Automobile Damper)

  • 조성진;전광기;최성진;최규재;최연선
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2005년도 춘계학술대회논문집
    • /
    • pp.873-876
    • /
    • 2005
  • The nonlinear characteristics of a damper is directly related to the car behavior and performance, both for handling and comfort. So considering the nonlinear characteristics of a damper such as hysteresis is important to analyze the dynamic characteristics of a car suspension. In this study, a mathematical nonlinear dynamic damper model based on experimental data is devised to estimate the nonlinear parameters of a NEW EF-SONATA damper using the least square method. The devised nonlinear dynamic damper model is used to analyze the reaction force of a NEW EF-SONATA suspension using ADAMS. The simulation results are good agreement with the experimental data than those of the linear model.

  • PDF

INVERSE PROBLEM FOR STOCHASTIC DIFFERENTIAL EQUATIONS ON HILBERT SPACES DRIVEN BY LEVY PROCESSES

  • N. U., Ahmed
    • Nonlinear Functional Analysis and Applications
    • /
    • 제27권4호
    • /
    • pp.813-837
    • /
    • 2022
  • In this paper we consider inverse problem for a general class of nonlinear stochastic differential equations on Hilbert spaces whose generating operators (drift, diffusion and jump kernels) are unknown. We introduce a class of function spaces and put a suitable topology on such spaces and prove existence of optimal generating operators from these spaces. We present also necessary conditions of optimality including an algorithm and its convergence whereby one can construct the optimal generators (drift, diffusion and jump kernel).

IMS용 로봇에서의 FDI기법 연구 (Fault detection and identification for a robot used in intelligent manufacturing)

  • 이상길;송택렬
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1997년도 한국자동제어학술회의논문집; 한국전력공사 서울연수원; 17-18 Oct. 1997
    • /
    • pp.1489-1492
    • /
    • 1997
  • To increase reliability and performance of an IMS(Intelligent Manufacturing System), fault tolerant control based on an accurate fault diagnosis is needed. In this paper, robot FDI(fault detection and identification) is proposed for IMS where the robot is controlled with state estimates of a nonlinear filter using a mathematical robot model. The Chi-square distribution is applied fault detection and fault size is estimated by a proposed bias filter. Performance of the proposed algorithm is tested by simulation for studies.

  • PDF

IMS용 로봇의 고장진단기법에 관한 연구 (Fault Detection and Identification for a Robot used in Intelligent Manufacturing)

  • 이상길;송택렬
    • 제어로봇시스템학회논문지
    • /
    • 제4권5호
    • /
    • pp.666-673
    • /
    • 1998
  • To increase reliability and performance of an IMS(Intelligent Manufacturing System), fault tolerant control based on an accurate fault diagnosis is needed. In this paper, robot FDI(fault detection and identification) is proposed for IMS where the robot is controlled with state estimates of a nonlinear filter using a mathematical robot model. The Chi-square test and GLR(General likelihood ratio) test are applied for fault detection and fault size is estimated by a proposed bias filter. Performance of the proposed algorithm is tested by simulation for studies.

  • PDF

시간 영역에서의 Extended Kalman Filter 알고리즘을 이용한 동적 기계 시스템의 파라미터 추정에 관한 연구 (A study on the Parameter Identification for a Mechanical Dynamic System Using a Time-Domain Extened Kalman Filter Algorithm)

  • 이용복;김창호;사종성;김광식
    • 소음진동
    • /
    • 제2권2호
    • /
    • pp.135-140
    • /
    • 1992
  • The Extended Kalman Filter(EKF) algorithm estimates variables and unknown parameters simultaneously and is applied to parameter identification of linear and nonlinear mechanical systems. In this paper, an EKF algorithm was developed through a computer simulation and then applied to a sealing test system as a practical example. Comparing with the frequency domain analysis, it was proved to be a useful alternative for the parameter identification.

  • PDF